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Abstract

Many clustering algorithms, including cluster ensembles, rely on a random component. Stability

of the results across different runs is considered to be an asset of the algorithm. The cluster ensembles

considered here are based on k-means clusterers. Each clusterer is assigned a random target number of

clusters, k, and is started from a random initialization. Here we use 10 artificial and 10 real data sets to

study ensemble stability with respect to random k and random initialization. The data sets were chosen

to have small number of clusters (2 to 7) and moderate number of data points (up to a few hundred).
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Pairwise stability is defined as the adjusted Rand index between pairs of clusterers in the ensemble,

averaged across all pairs. Non-pairwise stability is defined as the entropy of the consensus matrix of

the ensemble. An experimental comparison with the stability of the standard k-means algorithm was

carried out for k from 2 to 20. The results revealed that ensembles are generally more stable, markedly

so for larger k. To establish whether stability can serve as a cluster validity index, we first looked at the

relationship between stability and accuracy with respect to the number of clusters, k. We found that

such a relationship strongly depends on the data set, varying from almost perfect positive correlation

(0.97, for the glass data) to almost perfect negative correlation (−0.93, for the crabs data). We propose

a new combined stability index to be the sum of the pairwise individual and ensemble stabilities. This

index was found to correlate better with the ensemble accuracy. Following the hypothesis that a point

of stability of a clustering algorithm corresponds to a structure found in the data, we used the stability

measures to pick the number of clusters. The combined stability index gave best results.
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I. Introduction

Cluster ensembles have been introduced as a more accurate alternative to individual

clustering algorithms. Many published studies have demonstrated the advantages of

such ensembles over single clusterers in discovering clusters of arbitrary shape and size

[12,14,32]. Two major themes in this literature are combination methods of the ensemble

votes and diversifying heuristics for building the ensemble.

Here we are interested in stability of cluster ensembles. Stability of a clustering

algorithm with respect to small perturbations of the data (e.g., data sub-sampling or

re-sampling, small variations in the feature values) or the parameters of the algorithm

(e.g., random initialization) is a desirable quality [29]. On the other hand, ensembles

benefit from diverse clusterers [8, 16, 17]. This paper carries out an experimental study

to examine whether cluster ensembles give more stable results than single clustering

methods. In doing so, we also look for a cluster validity index which can help us to
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identify the “best” number of clusters. Not every clustering algorithm, be it an ensemble

or a single clusterer, will be able to discover the true structure in the data. Therefore,

there might be an optimal number of clusters for the considered algorithm, which is

not necessarily the true number of clusters. High correlation between stability and a

suitable measure of accuracy of the clustering algorithm is paramount for finding this

optimal number of clusters.

In this study we are looking for answers to the following questions:

1. Are ensembles more stable than individual clusterers?

2. Is ensemble stability related to ensemble accuracy?

3. How good is ensemble stability as a cluster validity measure?

The rest of the paper is organized as follows. Cluster ensembles are briefly introduced

in Section II. Section III details the stability measures evaluated in this study and

discusses their application as cluster validity indices. Section IV describes the data

sets, the experimental protocol and the results. Section V contains our discussion and

conclusions.

II. Cluster ensembles

Let P1, . . . , PL be a set of partitions of a data set Z, each one obtained from applying

a clustering algorithm. The aim is to find a resultant partition P ∗ which best represents

the structure of Z. We can think of the L partitions as the decisions of an ensemble of

clusterers with P ∗ being the combined decision of the ensemble.

The two major issues are how to build diverse yet accurate individual clusterers and

how to combine their decisions. Various heuristics have been proposed in the litera-

ture for building the ensemble members. Among these are random initializations of

the clustering algorithm, sub-sampling or re-sampling the data [5, 8, 9, 13, 16, 26, 27],

applying different types of clustering algorithms [1, 16, 18, 37], using subsets of features
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[16, 32], “weakening” the clustering algorithm [16, 34], projecting the data in random

affine subspaces [8, 34], and so on. One of the most successful heuristics has been

choosing randomly the number of clusters assigned to each clusterer in the ensemble

[12,13,16,17,21].

We can construct the resultant partition P ∗ following several approaches (called “con-

sensus functions”): the direct approach (re-labeling of Pi and finding P ∗ which has the

best match with all Pi, i = 1, . . . , L) [9,32,37], the feature-based approach (treating out-

puts from the clusterers as L categorical features and building a clusterer thereupon)

[35], the hyper-graph approach (constructing a hyper-graph representing the total out-

put from the clusterers and cutting the redundant edges) [32] and the pairwise approach

[1,8,10,11,13,27]. We implemented the pairwise approach because it has been a popular

choice despite its comparatively large computational demand. As cluster ensembles are

relatively new offspring of the multiple classifier systems area, to facilitate reproducibil-

ity of our results, we detail the generic pairwise cluster ensemble algorithm below.

1. Given is a dataset Z with N elements. Pick the ensemble size L and the number

of clusters k. Usually k is larger than the suspected number of clusters so there is

“overproduction” of clusters.1

2. Generate L partitions of Z with k clusters in each partition.

3. Form a co-association matrix for each partition, M (s) =
{
m

(s)
ij

}
, of size N × N ,

s = 1, . . . , L, where

m
(s)
ij =





1, if zi and zj are in the same cluster in partition s

0, if zi and zj are in different clusters in partition s

4. Form a final co-association matrix M (consensus matrix) from M (s), s = 1, . . . , L,

1Note that although k is fixed for all ensemble members in the original algorithm, in the version which we

use later on, k is chosen randomly for each ensemble member. This induces diversity in the ensemble, and has

been found to be one of the most useful cluster ensemble heuristics [12, 13,16,17,21].
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and derive the final clustering using this matrix. A typical choice for M is

M =
1

L

(
M (1) + M (2) + . . . + M (L)

)
.

The consensus matrix M can be regarded as a similarity matrix between the points of

Z. Therefore, it can be used with any clustering algorithm which operates directly upon

a similarity matrix. The output is taken to be the ensemble partition P ∗. The name

“pairwise” comes from relating pairs of objects to find P ∗. Viewed in this context,

a cluster ensemble is a type of stacked clustering whereby we can generate layers of

similarity matrices and apply clustering algorithms on them. In this study we use k-

means as the base clusterer and single linkage as the consensus function, interpreting

M as similarity. The target number of clusters for each clusterer is picked randomly

between 2 and a chosen value Kmax (here Kmax = 20).

By “accuracy” of a clustering algorithm we shall assume the similarity of the obtained

clustering to a known labeling of the data. Such labeling is available in a clear form

for artificially generated datasets. In order to use real datasets with known class labels,

we have to make the convenient assumption that classes correspond to clusters in data.

This may be true, partly or completely, for some real datasets but is by no means

guaranteed. Many authors have used real benchmark datasets with known class labels

to evaluate clustering algorithms, and we will follow this tradition here.

III. Stability Measures and cluster validity

Stability of a clustering algorithm with respect to small perturbations of data and

also different initializations is a desirable quality of the algorithm. Cluster ensembles,

on the other hand, enforce and exploit some instability so that the ensemble comprises of

diverse clusterers. Although built upon unstable components, the ensemble is expected

to be more accurate and robust than the individual clustering method. Here we look at
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stability of the ensemble.

A. Pairwise and non-pairwise stability

We consider two approaches to measuring stability of a set of clusterers, P1, . . . , PL:

pairwise and non-pairwise.2

In the pairwise approach, the match between each of the L(L − 1)/2 pairs of clus-

terers is calculated and the stability index is obtained as the averaged degree of match

across the pairs. Let S(Pi, Pj) be the degree of match (agreement or stability) between

partitions Pi and Pj. The pairwise stability index Sp is

Sp =
2

L(L− 1)

∑
1≤i,j≤L,

i<j

S(Pi, Pj). (1)

There are many indices evaluating the match between two partitions among which we

selected the adjusted Rand index [19,29]. This index takes value 1 if the partitions are

identical and has expected value of 0 if they are drawn independently of one another,

regardless of the number of clusters.

Let A and B be partitions of Z with kA and kB clusters respectively. Let ni be the

number of objects in cluster i in partition A and mj be the number of objects in cluster

j in partition B. Denote by nij the number of objects which belong simultaneously

to cluster i in partition A and cluster j in partition B. The adjusted Rand index is

calculated as

AR(A,B) =

∑kA
i=1

∑kB
j=1

(
nij

2

)
− t3

1
2
(t1 + t2)− t3

(2)

where

t1 =
kA∑

i=1

(
ni

2

)
; t2 =

kB∑

j=1

(
mj

2

)
; and t3 =

2t1t2
N(N − 1)

.

2Pairwise approach to measuring stability refers to pairs of clusterers and should not be confused with the

pairwise method for constructing the ensemble.



7

We will use the adjusted Rand index (2) to calculate the pairwise stability, Sp in (1)

and also to evaluate the accuracy of the clustering algorithm with respect to the known

true partition P true as AR(P ∗, P true) for the ensemble, and AR(Pi, P
true) for the i-th

individual clusterer.

In the non-pairwise approach, the consensus matrix M is analysed. If all the clusterers

agree on joining objects i and j in the same cluster, then mij = 1. If all clusterers agree

that objects i and j are in different clusters, then mij = 0. Only if there is disagreement

on joint membership of the two objects, will mij be between 0 and 1. In the case of

the largest disagreement, where i and j are in the same clusters in exactly L/2 of the

partitions P1, . . . , PL, mij = 0.5. It seems natural to measure the disagreement between

the clusterers as the averaged entropy of the cells of M (recall that M is of size N ×N ,

where N is the number of objects in the dataset, Z)3

H(M) = − 1

N2

N∑

i=1

N∑

j=1

(mij log (mij) + (1−mij) log (1−mij)) (3)

Entropy has been used as a measure of diversity of cluster ensembles by Greene

et al [16]. In the same vein, Monti et al. [27] propose to look at the “contrast” of

the distribution of the values mij. We shall use as the non-pairwise stability index

Snp = −H(M).

B. Using stability as a cluster validity index

Finding a suitable number of clusters is an ill-posed problem of crucial relevance in

cluster analysis [15, 20]. Various solution paths being explored can be roughly grouped

into two: approaches based on geometrical properties of the clusters (compactness,

isolation, within- and between-cluster dispersion, etc.) and approaches based on the

concept of stability of the clustering. Within the first approach, the indices by Calinski-

3Assume 0 log(0) = 0.
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Harabasz and Krzanowski-Lai have been repeatedly chosen as benchmark [7,25,28,33].

The Gap statistic by Tibshirani et al. [33] has been shown to be very accurate for finding

the true number of clusters, while simultaneously testing for existence of a structure in

data. The stability approach is based on the idea that the correct number of clusters is a

point of stability for the clustering algorithm. In other words, the true number of clusters

is sought as the value for which the partitions obtained through data perturbation are

highly similar to one another. Different cross-validation protocols can be used, the two

most widely explored being 2-fold cross-validation [15,31] and bootstrap re-sampling or

sub-sampling [7, 9, 22–24,27,28].

The problem is ill-posed because there is no rigorous definition of what a cluster

is. Validity measures are based on geometrical properties of the clusters. Thus each

validity measure will favor a specific shape of clusters and will not be useful if clusters

are of very different shape. If we are looking for the true number of clusters with a

particular validity measure, we need to assume what shape the clusters are likely to

have. There might be clusters of very different shapes in the same dataset, and there

might be generally no information on the shape of the clusters in real datasets.

Different clustering algorithms may produce differently shaped clusters. It makes

sense to couple a measure of cluster validity with a particular clustering algorithm. Thus

if the measure indicates that the data is likely to contain k hyper-spherical clusters, k-

means can be used to find the labels. In this case, the number of clusters found by

such measures does not have to be the true number of clusters. Knowing the true

number of clusters and trying to enforce it upon k-means may lead to very poor results.

Figure 1 illustrates this point on a dataset called “difficult doughnut” (used later in the

experiment). There are two clusters in this dataset, the outer ring and the Gaussian

within, which are impossible to find by the standard k-means algorithm. Any attempt

to arrive at k = 2 clusters (subplot (a)) will give intuitively worse results than clustering
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in larger k where the outer ring is broken into subclusters (subplot (b)).

(a) (b)

Fig. 1. Difficult doughnut dataset (contains 10 more noise dimensions) clustered by k-means in: (a) 2

clusters and (b) 4 clusters.

The stability-based validity indices are not bound to the clustering method used for

partitioning the perturbed data. More importantly, there is no implied guess on the

clusters’ shape and size. This makes stability based indices more adequate for using

with cluster ensembles, knowing that the main claim of cluster ensembles is exactly

that the obtained clusters can be of any shape and size. The problem here is that the

assumption that stability corresponds to high accuracy may not always hold.

Here we take the stability route and assume that ensemble stability corresponds to

high ensemble accuracy. Note that by ensemble stability we shall mean the stability

of the ensemble decision, not stability among the clusterers within the ensemble. The

ensemble stability will be used as a validity index and compared to the results obtained

through stability of single clusterers.

This study differs from the previous works that use stability for validating clustering

results by the chosen source of variability. We evaluated stability of k-means and en-

sembles thereof across different initializations while the previous works have used data

resampling/subsampling. For a single k-means algorithm, this choice amounts to eval-

uating by Monte Carlo simulations the landscape of the sum-of-squared-error criterion

Je [4] for a given k. A landscape with a single minimum (leading to the same partition)

will correspond to high stability. The hypothesis is that this scenario indicates a true
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cluster structure in the data. If there are multiple minima but they are such that their

corresponding partitions are similar to one another, again, stability for the respective

k will be large. On the other hand, if the multiple minima of the criterion function

lead to very different partitions, stability will be low and, according to our hypothesis,

the plausibility of this structure will be low. Cluster ensembles optimise a different

criterion function, in most cases not explicitly defined. We note that we do not use the

information about the “depth” of the minima, and nor do the other methods based on

stability. For the individual clusterers this depth is the value of the criterion, albeit not

comparable across different k. For ensembles, defining and interpreting such a criterion

value is not straightforward.

IV. The experiment

A. The datasets

Ten artificial and ten real datasets were selected for this study. The artificial datasets

are shown in Figure 2. These are all created in 2 dimensions and are meant to present

different degree of challenge to the clustering algorithm. Ten dimensions of uniform

random noise were appended to each of the first three datasets (easy doughnut, difficult

doughnut and four gauss), while the other seven datasets were kept as 2-dimensional.

The 10 real datasets are described in table I.

B. Experimental protocol

The ensembles studied here consist of L = 25 clusterers where each clusterer is as-

signed a random number of clusters between 2 and Kmax (Kmax = 20 was chosen). The

consensus matrix M is calculated for each ensemble and fed to the single linkage clus-

tering algorithm. The ensemble decision is obtained by stopping the single linkage at a

predefined number of clusters, k. For each dataset we built 100 such ensembles. Denote
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Artificial data

Easy doughnut (2) Difficult doughnut (2) Four Gauss (4) Two spirals (2) Half rings (2)

Saturn (2) Petals (4) Boat (3) Noisy lines (2) Regular (16)

Fig. 2. Ten artificial datasets used in this study. The first three datasets were generated with 10

additional noise features. The number of clusters is given in parentheses.

by P ∗(k, j) the resultant partition by ensemble j, j = 1, . . . , 100, for number of clusters

k. The following statistics were calculated for k:

(1) Average ensemble accuracy

Ae(k) =
1

100

100∑

j=1

AR(P ∗(k, j), P true),

where AR(., .) is the adjusted Rand index;

(2) Total ensemble accuracy

At(k) = AR(P ∗(k), P true),

where P ∗(k) is the decision of the entire ensemble of the pooled 2500 clusterers;

(3) Individual accuracy

Ai(k) =
1

|Ik|
∑

j∈Ik

AR(Pj(k), P true),
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TABLE I
Characteristics of the 10 real datasets used in this study.

dataset Classes Objects Features Source
(c) (N) (n)

contractions 2 98 27 [36]
crabs 2 200 7 [30]
glass 7 214 9 UCI [2]
ionosphere 2 351 0 UCI [2]
iris 3 150 0 UCI [2]
respiratory 2 85 17 (private)
segmentation 7 210 19 UCI [2]
soybean-small 4 47 35 UCI [2]
thyroid 3 215 5 UCI [2]
wine 3 178 13 UCI [2]

Note: Datasets contractions and respiratory are explained in the Appendix.

where Ik ⊂ {1, 2, . . . , 2500} is the index set of all clusterers within the set of 2500 which

clustered in k, and |Ik| is the cardinality of Ik (approximately 2500/(Kmax − 1)). Pj(k)

denotes the partition produced by clusterer j.

(4) Pairwise ensemble stability4

Se
p(k) =

2

100× 99

∑
1≤i,j≤100,

i<j

AR(P ∗(k, i), P ∗(k, j)).

(5) Pairwise individual stability

S i
p(k) =

2

|Ik|(|Ik| − 1)

∑

i,j∈|Ik|,i<j

AR(Pi(k), Pj(k)).

For the adjusted Rand, the maximum value of 1 is obtained for identical partitions and

values around 0 are obtained for independent partitions (negative values are possible).

The non-pairwise measures based on entropy should be normalized before calculating

correlations or using these measures to select number of clusters. The minimum value of

0 is obtained when all partitions are the same. However, the maximum value of entropy

for a given k will depend on k. For example, suppose that k2 > k1 and the calculated

4Recall that the pairwise stability index for an ensemble is the averaged Adjusted Rand index (AR) across

all pairs of clusterers (Section III). The non-pairwise stability index is based on the entropy of the consensus

matrix M.
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entropies of the respective consensus matrices are such that H(k2) < H(k1). This could

be either because the clustering method is more stable for k2 or because the maximum

achievable entropy is lower and the method is more unstable for k2. To eliminate this

effect, some form of normalization is needed. For the asymptotic case where L → ∞
and N →∞, the maximum entropy of the consensus matrix for k clusters will be

Hmax(k) = −
(

1

k

)
log

(
1

k

)
.

The non-pairwise stability measures are then

(6) Non-pairwise ensemble stability

Se
np(k) = −H(Me(k))/Hmax(k),

where Me(k) is the consensus matrix obtained from the 100 ensemble outputs P ∗(k, j),

j = 1, . . . , 100 and

(7) Non-pairwise individual stability

S i
np(k) = −H(Mi(k))/Hmax(k),

where Mi(k) is the consensus matrix obtained from the partitions Pj(k), j ∈ Ik.

The next three subsections seek to answer the questions formulated in the Introduc-

tion:

1. Are ensembles more stable than individual clusterers? (Can we claim that Se
p(k) ≥

S i
p(k) and Se

np(k) ≥ S i
np(k)? For what values of k does this hold?)

2. Is ensemble stability related to ensemble accuracy? (What is the correlation across

k between Ae(k) on the one hand and Se
p(k) or Se

np(k) on the other hand?)

3. How good is ensemble stability as a cluster validity measure?

C. Are ensembles more stable than individual clusterers?

Figure 3 plots the proportion of the datasets (out of 20) for which Se
p(k) ≥ S i

p(k)

(dot marker) and also the proportion for which Se
np(k) ≥ S i

np(k) (triangle marker), as a



14

function of the number of clusters, k.

2 4 6 8 10 12 14 16 18 20
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(adjusted Rand) 

(entropy) 

K 

Proportion of data sets 

S
p
e(k) > S

p
i (k) 

S
np
e (k) > S

np
i (k) 

Fig. 3. Proportion of the datasets for which ensemble stability exceeds individual stability for the

pairwise (Sp) and the non-pairwise (Snp) measures.

It appears that single clusterers tend to be slightly more stable for small number of

clusters while ensembles are more stable for larger k. This tendency is more pronounced

for the pairwise stability index. This suggests that if the number of clusters is decided

by the maximum stability, ensembles will be likely to pick larger number of clusters than

will single clusterers.

We noticed that the individual stability is usually greater for small number of clusters.

However greater stability does not necessarily mean greater accuracy. Consider for

example the ‘noisy lines’ dataset. The individual stability for 2 clusters is almost perfect,

S i
p(2) = 0.9607 but this is because all partitions agree on the wrong two clusters, as

illustrated in Figure 4. The low ensemble stability, Se
p(2) = 0.3545, suggests that the

two clusters found by the individual k-means for k = 2 may not be the true clusters.

The fact that ensemble stability was lower than individual stability on more than half

of the datasets for small number of clusters requires further explanation. The reason

for this seemingly anomalous result is that the ensembles were built using a random

assignment of the number of clusters for each ensemble member. This number was varied
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Fig. 4. Clusters found by the overwhelming majority of the k-means clusterers for k = 2 on the ‘noisy

lines’ dataset.

between 2 and 20. Thus an ensemble with a small number of target clusters might be

composed of diverse and unstable individual clusterers. The natural ensemble tendency

towards stabilization may not be sufficient to raise the stability of such ensembles to that

of the individual clusterers for small k, as demonstrated by the example. This suggests

that neither of the stability indices should be lightly ignored, and that a combination

of the two may be beneficial.

D. Is ensemble stability related to ensemble accuracy?

Table II shows the Pearson correlation coefficients between ensemble accuracy Ae and

the stability indices for the 20 datasets. The correlation coefficients are computed from

the vector obtained by collecting the indices for k = 2 . . . Kmax.

Shown in Table III are the correlations averaged across the 20 datasets between the

two ensemble accuracy measures on the one hand and the stability indices.

Table II shows that while for some datasets the correlation between ensemble accuracy

and ensemble stability is almost perfect (e.g., difficult doughnut, regular and glass), for

other datasets, strong negative correlation is observed (e.g., petals, crabs and noisy-

lines). It seems that both measures “fit” well some datasets and fail on others, not

necessarily in conjunction with one another.

The last columns in Tables II and III present the correlation with a new stability

measure defined as
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TABLE II
Correlation between stability indices and ensemble accuracy Ae

Dataset S i
np Se

np S i
p Se

p S∗p
boat -0.6701 -0.8748 -0.4794 -0.4159 -0.7344

difficult-doughnut 0.5486 0.8892 0.8509 0.9615 0.9746
easy-doughnut -0.2926 0.9431 0.9618 0.8749 0.9525

four-gauss 0.5296 0.7673 0.5554 0.8269 0.7189
halfrings 0.9033 0.7395 0.9677 0.7702 0.9319

noisy-lines -0.4395 -0.9096 -0.1037 -0.7363 -0.9576
petals 0.4193 -0.8258 0.7025 -0.7723 0.0557

regular 0.6191 0.9933 0.5248 0.9521 0.8847
saturn 0.5844 0.5513 0.3310 0.2053 0.4383
spirals -0.1684 -0.008 -0.3489 0.5372 0.4001

contractions -0.9013 -0.7495 -0.8803 0.9717 0.9532
crabs 0.7401 -0.7746 0.7367 -0.9258 -0.1571
glass -0.9116 -0.1551 -0.8356 0.9651 0.6609

ionosphere -0.6619 -0.9604 -0.493 0.6819 0.6270
iris 0.4931 0.5586 0.6753 0.5117 0.6385

respiratory 0.7982 -0.7617 0.8867 -0.5453 0.5802
segmentation -0.0452 -0.4380 -0.1374 -0.3119 -0.4649

soybean -0.1145 0.3724 0.5450 0.6252 0.5981
thyroid -0.4727 0.3063 0.1929 0.7118 0.8841

wine 0.5648 -0.8414 0.6447 -0.3689 0.6824

TABLE III
Correlation between stability indices and accuracy averaged across the 20 datasets

Accuracy measure S i
np Se

np S i
p Se

p S∗p
Ai (individual) 0.3410 0.2651 0.4958 0.0942 0.3191

Ae (100 ensembles of 25 clusterers each) 0.0761 -0.0589 0.2649 0.2759 0.4333
At (one ensemble of 2500 clusterers) 0.1348 -0.0045 0.2754 0.2401 0.4174

S∗p(k) = S i
p(k) + Se

p(k). (4)

The rationale for this measure comes from the argument above about the counter-

intuitive finding that for small number of clusters, single clusterers appear to be more

stable than cluster ensembles.5 The final goal in devising a stability measure is to use

5We also tried a combined stability index between Si
np and Se

np but the results were worse and we do not
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it to guide the choice of a better ensemble. Thus we would like to be able to relate it to

the ensemble accuracy. The example in Figure 4 shows that individual clusterers can be

stable but incorrect in the case of small number of target clusters, k. This means that

high stability indicated by S i
p(k) for small k may not be trusted to predict high accuracy

of the clustering result. Instead of a stable single classifier, we can use an ensemble,

but according to table III it seems that the ensemble stability alone is not a very good

accuracy predictor either. The choice of the sum as a stability measure was based on

the observation that coincidental failures did not happen too often. While ensemble

stability slightly dominates individual stability in terms of correlation (Table III), they

rather complement one another, and there could be a benefit in combining the two. We

tried the sum as the simplest way for such combination, without a theoretical ground

why we should do so.

Table IV gives the list of the datasets sorted by Corr(S i
p,Ai) and also Corr(S∗p ,At).

The maximum achievable accuracy (obtained in the experiment) for each data set is also

shown. The sorted lists show that stability, both individual and combined relates almost

perfectly with the respective accuracy for some data sets and completely fails for other

data sets. An interesting example in this table is the ‘regular’ data set. It contains 16

clusters which could be identified by k-means for k=16. Thus the maximum accuracy

is high, both for individual clusterers (0.846) and for the ensemble (1.000). However,

while the individual S i
p does not correlate very well Ai, the correlation between S∗p and

At is very high (0.902). This means that the ensemble will be much more likely to find

the 16 clusters if k is picked by the maximum stability. Not only is the accuracy better

but the chance of achieving it is better too, which demonstrates the advantage of using

a cluster ensemble together with a stability measure.

To enable visual evaluation of the relationship between accuracy and stability, Figures

show them here.
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TABLE IV
Sorted correlations and maximum achievable accuracy

Dataset Corr maxAi Dataset Corr maxAt

(S i
p,Ai) (S∗p ,At)

contractions 0.977 0.331 difficult-doughnut 0.962 0.640
difficult-doughnut 0.965 0.446 halfrings 0.911 1.000

halfrings 0.934 0.582 regular 0.902 1.000
four-gauss 0.930 0.835 contractions 0.872 0.291

wine 0.841 0.366 thyroid 0.822 0.594
easy-doughnut 0.829 0.410 four-gauss 0.763 0.973

saturn 0.829 0.036 easy-doughnut 0.722 1.000
respiratory 0.824 0.116 wine 0.658 0.403

iris 0.779 0.673 glass 0.633 0.301
soybean 0.761 0.589 ionosphere 0.624 0.296

petals 0.610 0.904 soybean 0.538 0.937
regular 0.491 0.846 iris 0.504 0.713

glass 0.386 0.258 respiratory 0.432 0.100
spirals 0.328 0.059 spirals 0.410 0.426

ionosphere 0.265 0.208 saturn 0.335 0.060
boat 0.236 0.428 petals 0.005 0.894

thyroid 0.199 0.460 crabs -0.081 0.044
segmentation -0.284 0.378 segmentation -0.298 0.495

crabs -0.385 0.037 boat -0.429 0.511
noisy-lines -0.599 0.161 noisy-lines -0.937 0.409

5 plots S i
p, Se

p and
S∗p
2

, and ensemble accuracy At as functions of k for thyroid and petal

datasets. For the thyroid data, Se
p matches the shape of At very well, whereas S i

p does

not. The combined measure exhibits stronger correlation with At then either of the

two measures does individually. The petal data set has a poor match between ensemble

stability and accuracy but a good match between S i
p and At. The combined stability

measure is inferior to the individual measure but reaches its maximum at the right

number of clusters (k = 4). Thus if we use one of S i
p or Se

p , we would have a good

predictor of accuracy on one of the data sets and a poor predictor on the other. If we

use S∗p , we would have a reasonable predictor on both datasets.

As argued earlier, stability would measure the quality of a particular clustering method
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Fig. 5. Stability Si
p, Se

p and S∗p
2 , and ensemble accuracy At as functions of k for thyroid and petal

datasets.

rather than a general property of the dataset. According to Tables II and III, the

combined stability index, S∗p fares better than both individual and ensemble stability

indices. An interesting question here is whether stability-accuracy correlation is better

when the dataset is easy or difficult to cluster. To answer this question, Figure 6

displays a scatterplot of 20 points corresponding to the datasets in the plane spanned

by the maximum possible accuracy for each dataset, i.e., maxkAt(k), and the correlation

between At and S∗p calculated across k.

With the exception of petals dataset, there is no point in the zone where maxkAt(k) >

0.6 and Correlation (At,S∗p) < 0.5. This suggests that if high accuracy is possible, the

correlation will be reasonably strong. The exception is the petal dataset where high

accuracy is possible but the combined index S∗p may not pick it up because it is not well

related to accuracy. However, Figure 5 shows that even for this worst case scenario, a

good ensemble will be selected if we pick the ensemble with the maximum S∗p . In fact,

this will be the ensemble picked also by the individual measure, S i
p, which exhibits much

stronger correlation with accuracy for this data set.
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Fig. 6. Correlation between At and S∗p versus maxkAt(k) for the 20 datasets.

On the other hand, high correlation does not guarantee high accuracy as the con-

tractions dataset demonstrates. We also note that there are no datasets for which

maxkAt(k) < 0.25 and Correlation (At,S∗p) > 0.5.

In other words, if high accuracy is possible, it is likely that the stability index might

work well for choosing a good ensemble. If high accuracy is not possible, applying the

index will do no harm as the result will not be useful anyway.

E. How good is ensemble stability as a cluster validity measure?

To answer this question, we consider the following ways for determining the number

of clusters

(1) True k. We assume that there is an oracle to give the true number of clusters for

each dataset. With reservations explained above, we assume that the number of clusters

for the real datasets is equal to the number of classes.

(2) k-total. Consider the whole ensemble of 2500 clusterers. The consensus matrix
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for the ensemble is submitted as the similarity matrix to the single linkage procedure

acting as consensus function. k-total is the number of clusters corresponding to the

largest jump of the distance criterion function. This is a traditional way of choosing the

number of clusters when using single linkage.

(3) k-majority. Consider now the 100 ensembles of 25 clusterers each. The consensus

matrix of each ensemble was submitted to single linkage in order to get the ensemble

partition. The stopping k is again the number of clusters corresponding to the largest

jump in the criterion for a particular ensemble. k-majority is the value most often

selected among the 100 suggested k’s.

(4)-(8) are the numbers of clusters obtained through the maxima of the 5 stability

indices explored in this study.

(9) Best k. The maximum of the ensemble accuracy is identified together with the

corresponding k. This is again a type of oracle solution which will gauge the maximum

achievable accuracy for a particular dataset.

The number of clusters produced by an ensemble was further compared to an empir-

ically set threshold. If the suggested number of clusters exceeded 80% of the number

of points in the data, the number was reassigned to 1, and no cluster structure was

reported. Also, since we limited the study to Kmax = 20 clusters, all numbers obtained

for k-total and k-majority greater than 20 were reassigned to 20.

Table V shows the suggested number of clusters, k∗ and the corresponding ensemble

accuracies, Ae(k∗), for the 20 datasets.

For comparison, Table VI displays the averaged percentage achievement of Ai, Ae and

At for the suggested k, as in Table V. The percentage achievement of method X is the

achieved accuracy A divided by the maximum possible A for this data set across all k

multiplied by 100. Shown also are the average ranks of the 8 methods for suggesting

k. The best-k was excluded from this comparison because it will always give the best



22

TABLE V
Suggested number of clusters, k∗ and the corresponding ensemble accuracies, Ae(k∗)

Dataset true k k-total k-maj k
(
Si

np

)
k
(
Se

np

)
k
(
Si

p

)
k
(
Se

p

)
k
(
S∗p

)
best k

boat 3 (0.42) 2 (0.34) 2(0.34) 2 (0.34) 20 (0.28) 2 (0.34) 20(0.28) 2(0.34) 7(0.48)
contractions 2 (0.02) 12 (0.24) 2(0.02) 3 (0.04) 2 (0.02) 3 (0.04) 14(0.23) 13(0.24) 11(0.24)

crabs 2 (0.03) 2 (0.03) 20(0.01) 2 (0.03) 20 (0.01) 2 (0.03) 20(0.01) 4(0.03) 3(0.03)
difficult-d 2 (0.26) 4 (0.53) 2(0.26) 5 (0.56) 7 (0.58) 4 (0.53) 7(0.58) 7(0.58) 6(0.58)

easy-d 2 (0.66) 3 (0.74) 3(0.74) 2 (0.66) 3 (0.74) 2 (0.66) 3(0.74) 3(0.74) 3(0.74)
4-gauss 4 (0.90) 6 (0.97) 5(0.95) 5 (0.95) 6 (0.97) 5 (0.95) 6(0.97) 5(0.95) 6(0.97)

glass 6 (0.24) 6 (0.24) 2(0.02) 2 (0.02) 2 (0.02) 2 (0.02) 19(0.28) 6(0.24) 10(0.29)
halfrings 2 (0.98) 3 (0.81) 2(0.98) 2 (0.98) 2 (0.98) 2 (0.98) 2(0.98) 2(0.98) 2(0.98)

ionosphere 2(-0.01) 4(-0.02) 20(0.20) 2(-0.01) 2(-0.01) 2(-0.01) 20(0.20) 20(0.20) 20(0.20)
iris 3 (0.60) 2 (0.57) 2(0.57) 2 (0.57) 2 (0.57) 2 (0.57) 2(0.57) 2(0.57) 4(0.66)

noisys 2 (0.25) 2 (0.25) 2(0.25) 2 (0.25) 19 (0.12) 2 (0.25) 19(0.12) 20(0.12) 4(0.35)
petals 4 (0.75) 2 (0.33) 2(0.33) 4 (0.75) 2 (0.33) 4 (0.75) 2(0.33) 4(0.75) 5(0.76)

respiratory 2 (0.04) 3 (0.09) 3(0.09) 3 (0.09) 14 (0.03) 3 (0.09) 12(0.04) 3(0.09) 4(0.09)
regular 16 (1.00) 16 (1.00) 16(1.00) 4 (0.24) 16 (1.00) 4 (0.24) 16(1.00) 17(0.98) 16(1.00)
saturn 2 (0.02) 2 (0.02) 2(0.02) 10 (0.03) 20 (0.04) 8 (0.02) 4(0.02) 19(0.04) 17(0.04)

segment 7 (0.25) 2 (0.00) 2(0.00) 4 (0.12) 2 (0.00) 4 (0.12) 2(0.00) 2(0.00) 19(0.45)
soybean 4 (0.74) 3 (0.65) 3(0.65) 2 (0.48) 3 (0.65) 2 (0.48) 3(0.65) 3(0.65) 5(0.81)

spirals 2 (0.11) 2 (0.11) 20(0.13) 20 (0.13) 20 (0.13) 4 (0.14) 20(0.13) 20(0.13) 6(0.15)
thyroid 3 (0.34) 12 (0.46) 20(0.24) 2 (0.19) 2 (0.19) 2 (0.19) 7(0.55) 5(0.49) 7(0.55)

wine 3 (0.32) 6 (0.29) 2(0.29) 2 (0.29) 20 (0.13) 2 (0.29) 8(0.27) 2(0.29) 3(0.32)
(0.40) (0.38) (0.35) (0.33) (0.34) (0.33) (0.40) (0.42) (0.48)

solution and occupy the winning place anyway. The ranks were calculated so that, for

each dataset, the most accurate method received rank 1, the next best received rank

2, and so on. Thus the worst method will receive rank 8 for a particular dataset. If

there was a tie, the ranks were recalculated so that the tied methods receive altogether

the sum of the ranks for the places they would have if there was no tie. For example,

if methods B, C and D have the same score, which is the second best after method A,

then A will get rank 1, and each of B, C and D will get rank 3. The ranks were averaged

across the 20 datasets. Marked in boldface are the best results in each row.

TABLE VI
Overall accuracies and ranks for the chosen number of clusters

Accuracy true k k-total k-maj k
(
Si

np

)
k
(
Se

np

)
k
(
Si

p

)
k
(
Se

p

)
k
(
S∗p

)
Ai (individual) 76 64 67 73 69 73 67 79
rank 1.875 2.850 2.675 2.500 2.875 2.525 2.875 1.825
Ae (ensemble, 72 75 66 66 58 65 75 85
L = 25) rank 2.125 2.400 2.875 2.650 3.225 2.625 2.325 1.775
At (ensemble, 67 72 61 63 50 62 69 78
L = 2500) rank 2.125 2.150 2.825 2.450 3.425 2.575 2.425 2.025

The tables show that the combined stability index is the best cluster validity index

among the 8 compared ones, including the true number of clusters. As mentioned
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before, the true number of clusters may not be the optimal number for which a particular

clustering algorithm will disclose, to its best potential, the structure in the data. Cluster

ensembles often produce better results for a number of clusters different from true k.

The combined stability index appeared to be able to identify, if not the optimal k,

then a close rival. It should be noted however that given this number of experiments

the differences between the 8 methods were not found to be statistically significant

according to the Friedman Two-Way ANOVA.

One possible explanation for the lack of statistical significance of the differences is

that the only parameter that is altered is the number of clusters, k. The clustering

method is the same in all experiments, an ensemble of 25 clusterers. Because of this,

multiple ties can be expected, as seen in Table V, corresponding to the same ensemble

accuracy. Thus the total rankings of the methods are likely to be similar.

Note that while the real data sets were chosen randomly, the artificial sets were

designed with specific difficulties in mind. They do not represent a random sample

from data sets which may occur in practice; they are rather special cases, some of

them intentionally created to be impossible to solve with k-means. Hence, a statistical

conclusion based on the current selection of data sets is not necessarily valid in the

general case.

Finally, to show how close the decision by k
(
S∗p

)
is to the maximum possible accuracy,

Figure 7 plots a bar graph with the maximum At for the datasets (grey), and the

corresponding accuracy obtained for k
(
S∗p

)
clusters. The combined stability index S∗p

gives close to optimal performance on the large majority of the datasets.

V. Summary and conclusions

Stability of clustering algorithms relying on a random component is an important

issue. High stability across different runs is considered to be an asset. We examined



24

ea
sy

−d
ou

gh
nu

t

ha
lfr

in
gs

re
gu

la
r

fo
ur

−g
au

ss
so

yb
ea

n
pe

ta
ls

iri
s

di
ffi

cu
lt−

do
ug

hn
ut

th
yr

oi
d

bo
at

se
gm

en
ta

tio
n

sp
ira

ls
no

is
y−

lin
es

w
in

e
gl

as
s

io
no

sp
he

re
co

nt
ra

ct
io

ns
re

sp
ira

to
ry

sa
tu

rn
cr

ab
s

1 

0 

Fig. 7. Maximum possible accuracy (grey) and obtained accuracy using k
(S∗p

)
(black).

stability of cluster ensembles consisting of k-means clusterers, each clusterer ran with a

random initialization and with a random assignment of k. The stability of the ensemble

was evaluated and compared to the stability of the individual k-means for values of k

from 2 to 20. The questions addressed by the experiment and the answers found are

summarised below.

(1) Are ensembles more stable than individual clusterers? Generally, yes. This is

more clearly expressed for larger k (Figure 3). We note however, that the true number of

clusters for the datasets in this study is relatively small, which means that the dominance

between individual stability and ensemble stability around the true number of clusters

is not clear-cut.

(2) Is ensemble stability related to ensemble accuracy? We discovered an interesting

phenomenon about stability-accuracy relationship. While for some datasets Se(k) and

Ae(k) exhibited almost perfect positive correlation (0.97, for the glass data), for other

datasets, almost perfect negative correlation was observed (−0.93, for the crabs data).

Thus we introduced a combined stability index, S∗p , aimed at preserving the chance for

finding a suitable k. If we use only the ensemble stability index for cluster validity,

we might miss a peak of stability around the true number of clusters detected by the
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individual stability index. An example of this phenomenon is the result for the boat

dataset in Table V. The ensemble on its own suggests k
(
Se

p

)
= 20 clusters (accuracy

0.28). The combined index agrees with the individual index on 2 clusters (accuracy

0.34). An example of the opposite case is the ionosphere dataset where the initial peak

of the individual stability at k = 2 (the true number) is not sufficient to pull up the

combined index to reach maximum at k = 2. Even though the true number of clusters is

not recovered by the combined index, the accuracy of the ensemble is better for k = 20

as chosen by the ensemble and subsequently by the combined index. In general, S∗(k)

correlated reasonably with Ae(k) and At(k) although, again strongly varying across

datasets (Tables II, III and IV). In reality, we will not have true labels and will not

know which of the two situations we are in. The best option is to use S∗(k) as it has

the fewer number of negative correlations compared to the other 4 stability indices.

We looked further to single out the datasets with negative correlations. The scatter-

plot in Figure 6 suggests that if high accuracy is possible, it is likely that the stability

index might correlate well with the accuracy (points in the top right corner).

(3) How good is ensemble stability as a cluster validity measure? Here we followed

a hypothesis strongly motivated and used for cluster validity in the relevant literature.

This hypothesis states that a point of stability of a clustering algorithm corresponds to

a structure found in the data. Therefore we used the maximum stability measures to

pick the number of clusters. Without an oracle, the next most widely used heuristic

for selecting number of clusters is cutting the dendrogram of a hierarchical clustering

algorithm at the largest jump of the distance criterion. We used this method in two

variants: with an ensemble of 2500 clusterers, and as the majority k of 100 ensembles

of 25 clusterers each. The combined stability proposed here gave best results compared

to pairwise and non-pairwise individual and ensemble stabilities (Table V). Curiously,

small improvement of the clustering accuracy was also observed when cluster ensembles
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were assigned k found through the combined stability index, S∗p(k), compared to the

known (assumed true) number of clusters.

There are many open questions here. First, the findings of this study suggest a

methodology for measuring cluster validity. As a large number of clusterers will be

produced, and previous studies suggest that large ensembles fare better [16,26], we may

use a large ensemble anyway. In this paper we considered both Ae(k) (averaged across

the 100 ensembles of 25 clusterers) and At(k) (for the whole ensemble of 2500 cluster-

ers). The overall results with the whole ensemble were slightly better although to verify

this statistically, a number of large ensembles have to be constructed. The clustering

procedure is then the following:

(i) Choose Kmax, the ensemble size L and number of ensembles T ;

(ii) Generate L× T k-means clusterers with random k from 2 to Kmax;

(iii) Group the clusterers randomly into T ensembles of L and evaluate S∗p (k) using (1),

for k = 2, . . . , Kmax;

(iv) Find k∗ = arg maxk

{
S∗p (k)

}
;

(v) Pool the L × T clusterers together, calculate the consensus matrix M, and feed it

as a similarity matrix to a single linkage clusterer. Cut the dendrogram at k∗ clusters

and return the labeling P ∗.

It is interesting to find out how stable and consistent the results would be for smaller

L and T than considered here, and probably for larger Kmax.

Another open question is whether findings similar to ours will hold for different types

of base clusterers and consensus functions. We chose k-means as the base clusterer and

single linkage as the consensus function because they are simple and efficient as found
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by many authors. Clearly, for some datasets used here, k-means and ensembles thereof

(with the chosen number Kmax) were inadequate, e.g., crab, saturn, boat, respiratory and

two-spirals. Path-based clustering would have been a suitable alternative [9]. Without

a prior knowledge or at least hypothesis about the type of clusters, we cannot predict

which method will be more suitable. Therefore, experiments with k-means ensembles

and path-based ensembles should be carried out on the whole variety of datasets, not

only the ones which are known to have benefited from a particular clustering method.

It will be interesting to keep the collection of datasets and extend the study to other

clustering methods and ensembles as well.

In this paper we only evaluated stability with respect to the intrinsic randomness of k-

means and k-means ensembles. Many previous studies use re-sampling or sub-sampling

of the dataset. A parallel can be drawn with stability estimation in supervised learning

based on small alterations of the training data [3, 6]. Theoretical results for clustering

methods and ensembles can be sought following this pattern. The stability indices

considered here can be applied without change to ensembles of different structures,

diversifying approaches and consensus functions. However, the answers to the three

main questions offered here may not be valid for other ensemble methods. In other

words, there may be ensemble types for which stability is a much better predictor of

ensemble accuracy.

Finally, stability and rather stability-plasticity dilemma for on-line clustering and

on-line cluster-validity presents a challenging extension of this study.
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Appendix

Below is a brief explanation of the two real datasets contractions and respiratory. The

data can be downloaded from http://www.informatics.bangor.ac.uk/~kuncheva/

patrec1.html

Contractions. This dataset comes from wireless capsule endoscopy [36]. The prob-

lem is to detect intestinal contractions in video images sent by a small capsule traveling

along the intestinal tract. Contractions which are of interest to the physician constitute

about 1% of the video time, therefore automatic labeling in preparation for further in-

spection is necessary. In a video sequence of 9 frames, a contraction is represented as

the lumen progressively closing and reopening. Twenty seven features were extracted

using basic image descriptors: mean intensity of each frame (9 features); hole size of

each frame (9 features) and global contrast of each frame (9 features). Two classes are

considered: contractions and non-contractions. The 98 objects (49 in each class) were

manually selected to represent the most clear examples of the classes. Note that the

prior probabilities for the two classes cannot be evaluated as the sample proportions.

Respiratory. The respiratory dataset consists of the clinical records (17 features) for

85 newborn children with two types of respiratory distress syndrome (RDS):- Hyaline

Membrane Disease (HMD) and non-HMD. The two classes need urgent and completely

different treatments, therefore an accurate RDS classification is crucial within the first

few hours after delivery.
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