Evaluation of Stability of k-means Cluster Ensembles with Respect to Random Initialization

Ludmila I. Kuncheva

School of Informatics, University of Wales, Bangor, Bangor, Gwynedd LL57 1UT, UK,
e-mail: l.i.kuncheva@bangor.ac.uk
tel: +44 1248 383661, fax: +44 1248 361429

Dmitry P. Vetrov*

Dorodnicyn Computing Centre, Russian Academy of Sciences, Vavilova str. 40, room 472, 119991 Moscow, Russian Federation
e-mail: vetrovd@yandex.ru
tel. +7 495 1354498, fax. +7 495 1356159

Abstract

Many clustering algorithms, including cluster ensembles, rely on a random component. Stability of the results across different runs is considered to be an asset of the algorithm. The cluster ensembles considered here are based on k-means clusterers. Each clusterer is assigned a random target number of clusters, k, and is started from a random initialization. Here we use 10 artificial and 10 real data sets to study ensemble stability with respect to random k and random initialization. The data sets were chosen to have small number of clusters (2 to 7) and moderate number of data points (up to a few hundred).

* Corresponding author
Pairwise stability is defined as the adjusted Rand index between pairs of clusterers in the ensemble, averaged across all pairs. Non-pairwise stability is defined as the entropy of the consensus matrix of the ensemble. An experimental comparison with the stability of the standard k-means algorithm was carried out for k from 2 to 20. The results revealed that ensembles are generally more stable, markedly so for larger k. To establish whether stability can serve as a cluster validity index, we first looked at the relationship between stability and accuracy with respect to the number of clusters, k. We found that such a relationship strongly depends on the data set, varying from almost perfect positive correlation (0.97, for the glass data) to almost perfect negative correlation (-0.93, for the crabs data). We propose a new combined stability index to be the sum of the pairwise individual and ensemble stabilities. This index was found to correlate better with the ensemble accuracy. Following the hypothesis that a point of stability of a clustering algorithm corresponds to a structure found in the data, we used the stability measures to pick the number of clusters. The combined stability index gave best results.

Keywords

Clustering; Cluster ensembles; Stability and diversity; Cluster validity.

I. Introduction

Cluster ensembles have been introduced as a more accurate alternative to individual clustering algorithms. Many published studies have demonstrated the advantages of such ensembles over single clusterers in discovering clusters of arbitrary shape and size [12,14,32]. Two major themes in this literature are combination methods of the ensemble votes and diversifying heuristics for building the ensemble.

Here we are interested in stability of cluster ensembles. Stability of a clustering algorithm with respect to small perturbations of the data (e.g., data sub-sampling or re-sampling, small variations in the feature values) or the parameters of the algorithm (e.g., random initialization) is a desirable quality [29]. On the other hand, ensembles benefit from diverse clusterers [8,16,17]. This paper carries out an experimental study to examine whether cluster ensembles give more stable results than single clustering methods. In doing so, we also look for a cluster validity index which can help us to...
identify the “best” number of clusters. Not every clustering algorithm, be it an ensemble or a single clusterer, will be able to discover the true structure in the data. Therefore, there might be an optimal number of clusters for the considered algorithm, which is not necessarily the true number of clusters. High correlation between stability and a suitable measure of accuracy of the clustering algorithm is paramount for finding this optimal number of clusters.

In this study we are looking for answers to the following questions:
1. Are ensembles more stable than individual clusterers?
2. Is ensemble stability related to ensemble accuracy?
3. How good is ensemble stability as a cluster validity measure?

The rest of the paper is organized as follows. Cluster ensembles are briefly introduced in Section II. Section III details the stability measures evaluated in this study and discusses their application as cluster validity indices. Section IV describes the data sets, the experimental protocol and the results. Section V contains our discussion and conclusions.

II. Cluster ensembles

Let P_1, \ldots, P_L be a set of partitions of a data set Z, each one obtained from applying a clustering algorithm. The aim is to find a resultant partition P^* which best represents the structure of Z. We can think of the L partitions as the decisions of an ensemble of clusterers with P^* being the combined decision of the ensemble.

The two major issues are how to build diverse yet accurate individual clusterers and how to combine their decisions. Various heuristics have been proposed in the literature for building the ensemble members. Among these are random initializations of the clustering algorithm, sub-sampling or re-sampling the data [5, 8, 9, 13, 16, 26, 27], applying different types of clustering algorithms [1, 16, 18, 37], using subsets of features
“weakening” the clustering algorithm [16, 34], projecting the data in random affine subspaces [8, 34], and so on. One of the most successful heuristics has been choosing randomly the number of clusters assigned to each clusterer in the ensemble [12, 13, 16, 17, 21].

We can construct the resultant partition P^* following several approaches (called “consensus functions”): the direct approach (re-labeling of P_i and finding P^* which has the best match with all P_i, $i = 1, \ldots, L$) [9, 32, 37], the feature-based approach (treating outputs from the clusterers as L categorical features and building a clusterer thereupon) [35], the hyper-graph approach (constructing a hyper-graph representing the total output from the clusterers and cutting the redundant edges) [32] and the pairwise approach [1, 8, 10, 11, 13, 27]. We implemented the pairwise approach because it has been a popular choice despite its comparatively large computational demand. As cluster ensembles are relatively new offspring of the multiple classifier systems area, to facilitate reproducibility of our results, we detail the generic pairwise cluster ensemble algorithm below.

1. Given is a dataset Z with N elements. Pick the ensemble size L and the number of clusters k. Usually k is larger than the suspected number of clusters so there is “overproduction” of clusters.

2. Generate L partitions of Z with k clusters in each partition.

3. Form a co-association matrix for each partition, $M^{(s)} = \{m^{(s)}_{ij}\}$, of size $N \times N$, $s = 1, \ldots, L$, where

$$m^{(s)}_{ij} = \begin{cases} 1, & \text{if } z_i \text{ and } z_j \text{ are in the same cluster in partition } s \\ 0, & \text{if } z_i \text{ and } z_j \text{ are in different clusters in partition } s \end{cases}$$

4. Form a final co-association matrix M (consensus matrix) from $M^{(s)}$, $s = 1, \ldots, L$.

1Note that although k is fixed for all ensemble members in the original algorithm, in the version which we use later on, k is chosen randomly for each ensemble member. This induces diversity in the ensemble, and has been found to be one of the most useful cluster ensemble heuristics [12, 13, 16, 17, 21].
and derive the final clustering using this matrix. A typical choice for M is

$$M = \frac{1}{L} \left(M^{(1)} + M^{(2)} + \ldots + M^{(L)} \right).$$

The consensus matrix M can be regarded as a similarity matrix between the points of Z. Therefore, it can be used with any clustering algorithm which operates directly upon a similarity matrix. The output is taken to be the ensemble partition P^*. The name “pairwise” comes from relating pairs of objects to find P^*. Viewed in this context, a cluster ensemble is a type of \textit{stacked clustering} whereby we can generate layers of similarity matrices and apply clustering algorithms on them. In this study we use k-means as the base clusterer and single linkage as the consensus function, interpreting M as similarity. The target number of clusters for each clusterer is picked randomly between 2 and a chosen value K_{max} (here $K_{\text{max}} = 20$).

By “accuracy” of a clustering algorithm we shall assume the similarity of the obtained clustering to a known labeling of the data. Such labeling is available in a clear form for artificially generated datasets. In order to use real datasets with known class labels, we have to make the convenient assumption that classes correspond to clusters in data. This may be true, partly or completely, for some real datasets but is by no means guaranteed. Many authors have used real benchmark datasets with known class labels to evaluate clustering algorithms, and we will follow this tradition here.

\section*{III. Stability Measures and Cluster Validity}

Stability of a clustering algorithm with respect to small perturbations of data and also different initializations is a desirable quality of the algorithm. Cluster ensembles, on the other hand, enforce and exploit some instability so that the ensemble comprises of diverse clusterers. Although built upon unstable components, the ensemble is expected to be more accurate and robust than the individual clustering method. Here we look at
A. Pairwise and non-pairwise stability

We consider two approaches to measuring stability of a set of clusterers, \(P_1, \ldots, P_L \): pairwise and non-pairwise.\(^2\)

In the pairwise approach, the match between each of the \(L(L - 1)/2 \) pairs of clusterers is calculated and the stability index is obtained as the averaged degree of match across the pairs. Let \(S(P_i, P_j) \) be the degree of match (agreement or stability) between partitions \(P_i \) and \(P_j \). The pairwise stability index \(S_p \) is

\[
S_p = \frac{2}{L(L-1)} \sum_{1 \leq i,j \leq L, i<j} S(P_i, P_j).
\]

(1)

There are many indices evaluating the match between two partitions among which we selected the adjusted Rand index [19,29]. This index takes value 1 if the partitions are identical and has expected value of 0 if they are drawn independently of one another, regardless of the number of clusters.

Let \(A \) and \(B \) be partitions of \(Z \) with \(k_A \) and \(k_B \) clusters respectively. Let \(n_i \) be the number of objects in cluster \(i \) in partition \(A \) and \(m_j \) be the number of objects in cluster \(j \) in partition \(B \). Denote by \(n_{ij} \) the number of objects which belong simultaneously to cluster \(i \) in partition \(A \) and cluster \(j \) in partition \(B \). The adjusted Rand index is calculated as

\[
AR(A, B) = \frac{\sum_{i=1}^{k_A} \sum_{j=1}^{k_B} \binom{n_{ij}}{2} - t_3}{\frac{1}{2} (t_1 + t_2) - t_3}
\]

(2)

where

\[
t_1 = \sum_{i=1}^{k_A} \binom{n_i}{2}; \quad t_2 = \sum_{j=1}^{k_B} \binom{m_j}{2}; \quad \text{and} \quad t_3 = \frac{2t_1t_2}{N(N-1)}.
\]

\(^2\)Pairwise approach to measuring stability refers to pairs of clusterers and should not be confused with the pairwise method for constructing the ensemble.
We will use the adjusted Rand index (2) to calculate the pairwise stability, \(S_p \) in (1) and also to evaluate the accuracy of the clustering algorithm with respect to the known true partition \(P^{\text{true}} \) as \(AR(P^*, P^{\text{true}}) \) for the ensemble, and \(AR(P_i, P^{\text{true}}) \) for the \(i \)-th individual clusterer.

In the non-pairwise approach, the consensus matrix \(M \) is analysed. If all the clusterers agree on joining objects \(i \) and \(j \) in the same cluster, then \(m_{ij} = 1 \). If all clusterers agree that objects \(i \) and \(j \) are in different clusters, then \(m_{ij} = 0 \). Only if there is disagreement on joint membership of the two objects, will \(m_{ij} \) be between 0 and 1. In the case of the largest disagreement, where \(i \) and \(j \) are in the same clusters in exactly \(L/2 \) of the partitions \(P_1, \ldots, P_L \), \(m_{ij} = 0.5 \). It seems natural to measure the disagreement between the clusterers as the averaged entropy of the cells of \(M \) (recall that \(M \) is of size \(N \times N \), where \(N \) is the number of objects in the dataset, \(Z \))\(^3\)

\[
H(M) = -\frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} (m_{ij} \log (m_{ij}) + (1 - m_{ij}) \log (1 - m_{ij}))
\]

Entropy has been used as a measure of diversity of cluster ensembles by Greene et al [16]. In the same vein, Monti et al. [27] propose to look at the “contrast” of the distribution of the values \(m_{ij} \). We shall use as the non-pairwise stability index \(S_{np} = -H(M) \).

B. Using stability as a cluster validity index

Finding a suitable number of clusters is an ill-posed problem of crucial relevance in cluster analysis [15,20]. Various solution paths being explored can be roughly grouped into two: approaches based on geometrical properties of the clusters (compactness, isolation, within- and between-cluster dispersion, etc.) and approaches based on the concept of stability of the clustering. Within the first approach, the indices by Calinski-

\(^3\)Assume \(0 \log(0) = 0 \).
Harabasz and Krzanowski-Lai have been repeatedly chosen as benchmark [7, 25, 28, 33]. The Gap statistic by Tibshirani et al. [33] has been shown to be very accurate for finding the true number of clusters, while simultaneously testing for existence of a structure in data. The stability approach is based on the idea that the correct number of clusters is a point of stability for the clustering algorithm. In other words, the true number of clusters is sought as the value for which the partitions obtained through data perturbation are highly similar to one another. Different cross-validation protocols can be used, the two most widely explored being 2-fold cross-validation [15, 31] and bootstrap re-sampling or sub-sampling [7, 9, 22–24, 27, 28].

The problem is ill-posed because there is no rigorous definition of what a cluster is. Validity measures are based on geometrical properties of the clusters. Thus each validity measure will favor a specific shape of clusters and will not be useful if clusters are of very different shape. If we are looking for the true number of clusters with a particular validity measure, we need to assume what shape the clusters are likely to have. There might be clusters of very different shapes in the same dataset, and there might be generally no information on the shape of the clusters in real datasets.

Different clustering algorithms may produce differently shaped clusters. It makes sense to couple a measure of cluster validity with a particular clustering algorithm. Thus if the measure indicates that the data is likely to contain \(k \) hyper-spherical clusters, \(k \)-means can be used to find the labels. In this case, the number of clusters found by such measures does not have to be the true number of clusters. Knowing the true number of clusters and trying to enforce it upon \(k \)-means may lead to very poor results. Figure 1 illustrates this point on a dataset called “difficult doughnut” (used later in the experiment). There are two clusters in this dataset, the outer ring and the Gaussian within, which are impossible to find by the standard \(k \)-means algorithm. Any attempt to arrive at \(k = 2 \) clusters (subplot (a)) will give intuitively worse results than clustering
in larger k where the outer ring is broken into subclusters (subplot (b)).

![Fig. 1. Difficult doughnut dataset (contains 10 more noise dimensions) clustered by k-means in: (a) 2 clusters and (b) 4 clusters.](image)

The stability-based validity indices are not bound to the clustering method used for partitioning the perturbed data. More importantly, there is no implied guess on the clusters’ shape and size. This makes stability based indices more adequate for using with cluster ensembles, knowing that the main claim of cluster ensembles is exactly that the obtained clusters can be of any shape and size. The problem here is that the assumption that stability corresponds to high accuracy may not always hold.

Here we take the stability route and assume that ensemble stability corresponds to high ensemble accuracy. Note that by *ensemble stability* we shall mean the stability of the ensemble decision, not stability among the clusterers within the ensemble. The ensemble stability will be used as a validity index and compared to the results obtained through stability of single clusterers.

This study differs from the previous works that use stability for validating clustering results by the chosen source of variability. We evaluated stability of k-means and ensembles thereof across different initializations while the previous works have used data resampling/subsampling. For a single k-means algorithm, this choice amounts to evaluating by Monte Carlo simulations the landscape of the sum-of-squared-error criterion J_e [4] for a given k. A landscape with a single minimum (leading to the same partition) will correspond to high stability. The hypothesis is that this scenario indicates a true
cluster structure in the data. If there are multiple minima but they are such that their corresponding partitions are similar to one another, again, stability for the respective k will be large. On the other hand, if the multiple minima of the criterion function lead to very different partitions, stability will be low and, according to our hypothesis, the plausibility of this structure will be low. Cluster ensembles optimise a different criterion function, in most cases not explicitly defined. We note that we do not use the information about the “depth” of the minima, and nor do the other methods based on stability. For the individual clusterers this depth is the value of the criterion, albeit not comparable across different k. For ensembles, defining and interpreting such a criterion value is not straightforward.

IV. The experiment

A. The datasets

Ten artificial and ten real datasets were selected for this study. The artificial datasets are shown in Figure 2. These are all created in 2 dimensions and are meant to present different degree of challenge to the clustering algorithm. Ten dimensions of uniform random noise were appended to each of the first three datasets (easy doughnut, difficult doughnut and four gauss), while the other seven datasets were kept as 2-dimensional.

The 10 real datasets are described in table I.

B. Experimental protocol

The ensembles studied here consist of $L = 25$ clusterers where each clusterer is assigned a random number of clusters between 2 and K_{max} ($K_{\text{max}} = 20$ was chosen). The consensus matrix M is calculated for each ensemble and fed to the single linkage clustering algorithm. The ensemble decision is obtained by stopping the single linkage at a predefined number of clusters, k. For each dataset we built 100 such ensembles. Denote
Artificial data

<table>
<thead>
<tr>
<th>Easy doughnut (2)</th>
<th>Difficult doughnut (2)</th>
<th>Four Gauss (4)</th>
<th>Two spirals (2)</th>
<th>Half rings (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturn (2)</td>
<td>Petals (4)</td>
<td>Boat (3)</td>
<td>Noisy lines (2)</td>
<td>Regular (16)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Ten artificial datasets used in this study. The first three datasets were generated with 10 additional noise features. The number of clusters is given in parentheses.

by $P^*(k, j)$ the resultant partition by ensemble j, $j = 1, \ldots, 100$, for number of clusters k. The following statistics were calculated for k:

1. Average ensemble accuracy

$$\mathcal{A}^e(k) = \frac{1}{100} \sum_{j=1}^{100} AR(P^*(k, j), P^{true}),$$

where $AR(., .)$ is the adjusted Rand index;

2. Total ensemble accuracy

$$\mathcal{A}^t(k) = AR(P^*(k), P^{true}),$$

where $P^*(k)$ is the decision of the entire ensemble of the pooled 2500 clusterers;

3. Individual accuracy

$$\mathcal{A}^i(k) = \frac{1}{|I_k|} \sum_{j \in I_k} AR(P_j(k), P^{true}),$$
TABLE I

Characteristics of the 10 real datasets used in this study.

<table>
<thead>
<tr>
<th>dataset</th>
<th>Classes (c)</th>
<th>Objects (N)</th>
<th>Features (n)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>contractions</td>
<td>2</td>
<td>98</td>
<td>27</td>
<td>[36]</td>
</tr>
<tr>
<td>crabs</td>
<td>2</td>
<td>200</td>
<td>7</td>
<td>[30]</td>
</tr>
<tr>
<td>glass</td>
<td>7</td>
<td>214</td>
<td>9</td>
<td>UCI [2]</td>
</tr>
<tr>
<td>ionosphere</td>
<td>2</td>
<td>351</td>
<td>0</td>
<td>UCI [2]</td>
</tr>
<tr>
<td>iris</td>
<td>3</td>
<td>150</td>
<td>0</td>
<td>UCI [2]</td>
</tr>
<tr>
<td>respiratory</td>
<td>2</td>
<td>85</td>
<td>17</td>
<td>(private)</td>
</tr>
<tr>
<td>segmentation</td>
<td>7</td>
<td>210</td>
<td>19</td>
<td>UCI [2]</td>
</tr>
<tr>
<td>soybean-small</td>
<td>4</td>
<td>47</td>
<td>35</td>
<td>UCI [2]</td>
</tr>
<tr>
<td>thyroid</td>
<td>3</td>
<td>215</td>
<td>5</td>
<td>UCI [2]</td>
</tr>
<tr>
<td>wine</td>
<td>3</td>
<td>178</td>
<td>13</td>
<td>UCI [2]</td>
</tr>
</tbody>
</table>

Note: Datasets contractions and respiratory are explained in the Appendix.

where $I_k \subset \{1, 2, \ldots, 2500\}$ is the index set of all clusterers within the set of 2500 which clustered in k, and $|I_k|$ is the cardinality of I_k (approximately $2500/(K_{\text{max}} - 1)$). $P_j(k)$ denotes the partition produced by clusterer j.

(4) Pairwise ensemble stability

$$
S_{p}^e(k) = \frac{2}{100 \times 99} \sum_{1 \leq i, j \leq 100, i < j} AR(P^*(k, i), P^*(k, j)).
$$

(5) Pairwise individual stability

$$
S_{p}^i(k) = \frac{2}{|I_k|(|I_k| - 1)} \sum_{i, j \in |I_k|, i < j} AR(P_i(k), P_j(k)).
$$

For the adjusted Rand, the maximum value of 1 is obtained for identical partitions and values around 0 are obtained for independent partitions (negative values are possible).

The non-pairwise measures based on entropy should be normalized before calculating correlations or using these measures to select number of clusters. The minimum value of 0 is obtained when all partitions are the same. However, the maximum value of entropy for a given k will depend on k. For example, suppose that $k_2 > k_1$ and the calculated

\(^4\text{Recall that the pairwise stability index for an ensemble is the averaged Adjusted Rand index (AR) across all pairs of clusterers (Section III). The non-pairwise stability index is based on the entropy of the consensus matrix M.}\)
entropies of the respective consensus matrices are such that $H(k_2) < H(k_1)$. This could be either because the clustering method is more stable for k_2 or because the maximum achievable entropy is lower and the method is more unstable for k_2. To eliminate this effect, some form of normalization is needed. For the asymptotic case where $L \to \infty$ and $N \to \infty$, the maximum entropy of the consensus matrix for k clusters will be

$$H_{\text{max}}(k) = -\left(\frac{1}{k}\right) \log \left(\frac{1}{k}\right).$$

The non-pairwise stability measures are then

(6) Non-pairwise ensemble stability

$$S_{np}^e(k) = -H(M_e(k))/H_{\text{max}}(k),$$

where $M_e(k)$ is the consensus matrix obtained from the 100 ensemble outputs $P^*(k, j)$, $j = 1, \ldots, 100$ and

(7) Non-pairwise individual stability

$$S_{np}^i(k) = -H(M_i(k))/H_{\text{max}}(k),$$

where $M_i(k)$ is the consensus matrix obtained from the partitions $P_j(k)$, $j \in I_k$.

The next three subsections seek to answer the questions formulated in the Introduction:

1. Are ensembles more stable than individual clusterers? (Can we claim that $S_{np}^e(k) \geq S_p^e(k)$ and $S_{np}^e(k) \geq S_{np}^i(k)$? For what values of k does this hold?)

2. Is ensemble stability related to ensemble accuracy? (What is the correlation across k between $A_e(k)$ on the one hand and $S_p^e(k)$ or $S_{np}^e(k)$ on the other hand?)

3. How good is ensemble stability as a cluster validity measure?

C. Are ensembles more stable than individual clusterers?

Figure 3 plots the proportion of the datasets (out of 20) for which $S_{np}^e(k) \geq S_p^e(k)$ (dot marker) and also the proportion for which $S_{np}^e(k) \geq S_{np}^i(k)$ (triangle marker), as a
function of the number of clusters, k.

![Graph showing the proportion of datasets for which ensemble stability exceeds individual stability for the pairwise (S_p) and the non-pairwise (S_{np}) measures.](image)

Fig. 3. Proportion of the datasets for which ensemble stability exceeds individual stability for the pairwise (S_p) and the non-pairwise (S_{np}) measures.

It appears that single clusterers tend to be slightly more stable for small number of clusters while ensembles are more stable for larger k. This tendency is more pronounced for the pairwise stability index. This suggests that if the number of clusters is decided by the maximum stability, ensembles will be likely to pick larger number of clusters than will single clusterers.

We noticed that the individual stability is usually greater for small number of clusters. However greater stability does not necessarily mean greater accuracy. Consider for example the ‘noisy lines’ dataset. The individual stability for 2 clusters is almost perfect, $S_p^i(2) = 0.9607$ but this is because all partitions agree on the wrong two clusters, as illustrated in Figure 4. The low ensemble stability, $S_p^e(2) = 0.3545$, suggests that the two clusters found by the individual k-means for $k = 2$ may not be the true clusters.

The fact that ensemble stability was lower than individual stability on more than half of the datasets for small number of clusters requires further explanation. The reason for this seemingly anomalous result is that the ensembles were built using a *random* assignment of the number of clusters for each ensemble member. This number was varied
between 2 and 20. Thus an ensemble with a small number of target clusters might be composed of diverse and unstable individual clusterers. The natural ensemble tendency towards stabilization may not be sufficient to raise the stability of such ensembles to that of the individual clusterers for small k, as demonstrated by the example. This suggests that neither of the stability indices should be lightly ignored, and that a combination of the two may be beneficial.

D. Is ensemble stability related to ensemble accuracy?

Table II shows the Pearson correlation coefficients between ensemble accuracy A^e and the stability indices for the 20 datasets. The correlation coefficients are computed from the vector obtained by collecting the indices for $k = 2 \ldots K_{\text{max}}$.

Shown in Table III are the correlations averaged across the 20 datasets between the two ensemble accuracy measures on the one hand and the stability indices.

Table II shows that while for some datasets the correlation between ensemble accuracy and ensemble stability is almost perfect (e.g., difficult doughnut, regular and glass), for other datasets, strong negative correlation is observed (e.g., petals, crabs and noisy-lines). It seems that both measures “fit” well some datasets and fail on others, not necessarily in conjunction with one another.

The last columns in Tables II and III present the correlation with a new stability measure defined as
TABLE II
Correlation between stability indices and ensemble accuracy A^e

<table>
<thead>
<tr>
<th>Dataset</th>
<th>S^i_{np}</th>
<th>S^e_{np}</th>
<th>S^i_p</th>
<th>S^e_p</th>
<th>S^*_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>boat</td>
<td>-0.6701</td>
<td>-0.8748</td>
<td>-0.4794</td>
<td>-0.4159</td>
<td>-0.7344</td>
</tr>
<tr>
<td>difficult-doughnut</td>
<td>0.5486</td>
<td>0.8892</td>
<td>0.8509</td>
<td>0.9615</td>
<td>0.9746</td>
</tr>
<tr>
<td>easy-doughnut</td>
<td>-0.2926</td>
<td>0.9431</td>
<td>0.9618</td>
<td>0.8749</td>
<td>0.9525</td>
</tr>
<tr>
<td>four-gauss</td>
<td>0.5296</td>
<td>0.7673</td>
<td>0.5554</td>
<td>0.8269</td>
<td>0.7189</td>
</tr>
<tr>
<td>halffrings</td>
<td>0.9033</td>
<td>0.7395</td>
<td>0.9677</td>
<td>0.7702</td>
<td>0.9319</td>
</tr>
<tr>
<td>noisy-lines</td>
<td>-0.4395</td>
<td>-0.9096</td>
<td>-0.1037</td>
<td>-0.7363</td>
<td>-0.9576</td>
</tr>
<tr>
<td>petals</td>
<td>0.4193</td>
<td>-0.8258</td>
<td>0.7025</td>
<td>-0.7723</td>
<td>0.0557</td>
</tr>
<tr>
<td>regular</td>
<td>0.6191</td>
<td>0.9933</td>
<td>0.5248</td>
<td>0.9521</td>
<td>0.8847</td>
</tr>
<tr>
<td>saturn</td>
<td>0.5844</td>
<td>0.5513</td>
<td>0.3310</td>
<td>0.2053</td>
<td>0.4383</td>
</tr>
<tr>
<td>spirals</td>
<td>-0.1684</td>
<td>-0.008</td>
<td>-0.3489</td>
<td>0.5372</td>
<td>0.4001</td>
</tr>
<tr>
<td>contractions</td>
<td>-0.9013</td>
<td>-0.7495</td>
<td>-0.8803</td>
<td>0.9717</td>
<td>0.9532</td>
</tr>
<tr>
<td>crabs</td>
<td>0.7401</td>
<td>-0.7746</td>
<td>0.7367</td>
<td>-0.9258</td>
<td>-0.1571</td>
</tr>
<tr>
<td>glass</td>
<td>-0.9116</td>
<td>-0.1551</td>
<td>-0.8356</td>
<td>0.9651</td>
<td>0.6609</td>
</tr>
<tr>
<td>ionosphere</td>
<td>-0.6619</td>
<td>-0.9604</td>
<td>-0.493</td>
<td>0.6819</td>
<td>0.6270</td>
</tr>
<tr>
<td>iris</td>
<td>0.4931</td>
<td>0.5586</td>
<td>0.6753</td>
<td>0.5117</td>
<td>0.6385</td>
</tr>
<tr>
<td>respiratory</td>
<td>0.7982</td>
<td>-0.7617</td>
<td>0.8867</td>
<td>-0.5453</td>
<td>0.5802</td>
</tr>
<tr>
<td>segmentation</td>
<td>-0.0452</td>
<td>-0.4380</td>
<td>-0.1374</td>
<td>-0.3119</td>
<td>-0.4649</td>
</tr>
<tr>
<td>soybean</td>
<td>-0.1145</td>
<td>0.3724</td>
<td>0.5450</td>
<td>0.6252</td>
<td>0.5981</td>
</tr>
<tr>
<td>thyroid</td>
<td>-0.4727</td>
<td>0.3063</td>
<td>0.1929</td>
<td>0.7118</td>
<td>0.8841</td>
</tr>
<tr>
<td>wine</td>
<td>0.5648</td>
<td>-0.8414</td>
<td>0.6447</td>
<td>-0.3689</td>
<td>0.6824</td>
</tr>
</tbody>
</table>

TABLE III
Correlation between stability indices and accuracy averaged across the 20 datasets

<table>
<thead>
<tr>
<th>Accuracy measure</th>
<th>S^i_{np}</th>
<th>S^e_{np}</th>
<th>S^i_p</th>
<th>S^e_p</th>
<th>S^*_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>A^i (individual)</td>
<td>0.3410</td>
<td>0.2651</td>
<td>0.4958</td>
<td>0.0942</td>
<td>0.3191</td>
</tr>
<tr>
<td>A^e (100 ensembles of 25 clusterers each)</td>
<td>0.0761</td>
<td>-0.0589</td>
<td>0.2649</td>
<td>0.2759</td>
<td>0.4333</td>
</tr>
<tr>
<td>A^t (one ensemble of 2500 clusterers)</td>
<td>0.1348</td>
<td>-0.0045</td>
<td>0.2754</td>
<td>0.2401</td>
<td>0.4174</td>
</tr>
</tbody>
</table>

$$S^*_p(k) = S^i_p(k) + S^e_p(k).$$ \hspace{1cm} (4)

The rationale for this measure comes from the argument above about the counter-intuitive finding that for small number of clusters, single clusterers appear to be more stable than cluster ensembles.5 The final goal in devising a stability measure is to use

5We also tried a combined stability index between S^i_{np} and S^e_{np} but the results were worse and we do not
it to guide the choice of a better ensemble. Thus we would like to be able to relate it to
the ensemble accuracy. The example in Figure 4 shows that individual clusterers can be
stable but incorrect in the case of small number of target clusters, k. This means that
high stability indicated by $S_p^i(k)$ for small k may not be trusted to predict high accuracy
of the clustering result. Instead of a stable single classifier, we can use an ensemble,
but according to table III it seems that the ensemble stability alone is not a very good
accuracy predictor either. The choice of the sum as a stability measure was based on
the observation that coincidental failures did not happen too often. While ensemble
stability slightly dominates individual stability in terms of correlation (Table III), they
rather complement one another, and there could be a benefit in combining the two. We
tried the sum as the simplest way for such combination, without a theoretical ground
why we should do so.

Table IV gives the list of the datasets sorted by $Corr(S_p^i, A^i)$ and also $Corr(S_p^*, A^i)$.
The maximum achievable accuracy (obtained in the experiment) for each data set is also
shown. The sorted lists show that stability, both individual and combined relates almost
perfectly with the respective accuracy for some data sets and completely fails for other
data sets. An interesting example in this table is the ‘regular’ data set. It contains 16
clusters which could be identified by k-means for $k=16$. Thus the maximum accuracy
is high, both for individual clusterers (0.846) and for the ensemble (1.000). However,
while the individual S_p^i does not correlate very well A^i, the correlation between S_p^* and
A^i is very high (0.902). This means that the ensemble will be much more likely to find
the 16 clusters if k is picked by the maximum stability. Not only is the accuracy better
but the chance of achieving it is better too, which demonstrates the advantage of using
a cluster ensemble together with a stability measure.

To enable visual evaluation of the relationship between accuracy and stability, Figures
show them here.
Table IV

Sorted correlations and maximum achievable accuracy

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Corr ((S_p^i, A^i))</th>
<th>max (A^i)</th>
<th>Dataset</th>
<th>Corr ((S_p^*, A^i))</th>
<th>max (A^i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>contractions</td>
<td>0.977</td>
<td>0.331</td>
<td>difficult-doughnut</td>
<td>0.962</td>
<td>0.640</td>
</tr>
<tr>
<td>difficult-doughnut</td>
<td>0.965</td>
<td>0.446</td>
<td>halfrings</td>
<td>0.911</td>
<td>1.000</td>
</tr>
<tr>
<td>halfrings</td>
<td>0.934</td>
<td>0.582</td>
<td>regular</td>
<td>0.902</td>
<td>1.000</td>
</tr>
<tr>
<td>four-gauss</td>
<td>0.930</td>
<td>0.835</td>
<td>contractions</td>
<td>0.872</td>
<td>0.291</td>
</tr>
<tr>
<td>wine</td>
<td>0.841</td>
<td>0.366</td>
<td>thyroid</td>
<td>0.822</td>
<td>0.594</td>
</tr>
<tr>
<td>easy-doughnut</td>
<td>0.829</td>
<td>0.410</td>
<td>four-gauss</td>
<td>0.763</td>
<td>0.973</td>
</tr>
<tr>
<td>saturn</td>
<td>0.829</td>
<td>0.036</td>
<td>easy-doughnut</td>
<td>0.722</td>
<td>1.000</td>
</tr>
<tr>
<td>respiratory</td>
<td>0.824</td>
<td>0.116</td>
<td>wine</td>
<td>0.658</td>
<td>0.403</td>
</tr>
<tr>
<td>iris</td>
<td>0.779</td>
<td>0.673</td>
<td>glass</td>
<td>0.633</td>
<td>0.301</td>
</tr>
<tr>
<td>soybean</td>
<td>0.761</td>
<td>0.589</td>
<td>ionosphere</td>
<td>0.624</td>
<td>0.296</td>
</tr>
<tr>
<td>petals</td>
<td>0.610</td>
<td>0.904</td>
<td>soybean</td>
<td>0.538</td>
<td>0.937</td>
</tr>
<tr>
<td>regular</td>
<td>0.491</td>
<td>0.846</td>
<td>iris</td>
<td>0.504</td>
<td>0.713</td>
</tr>
<tr>
<td>glass</td>
<td>0.386</td>
<td>0.258</td>
<td>respiratory</td>
<td>0.432</td>
<td>0.100</td>
</tr>
<tr>
<td>spirals</td>
<td>0.328</td>
<td>0.059</td>
<td>spirals</td>
<td>0.410</td>
<td>0.426</td>
</tr>
<tr>
<td>ionosphere</td>
<td>0.265</td>
<td>0.208</td>
<td>saturn</td>
<td>0.335</td>
<td>0.060</td>
</tr>
<tr>
<td>boat</td>
<td>0.236</td>
<td>0.428</td>
<td>petals</td>
<td>0.005</td>
<td>0.894</td>
</tr>
<tr>
<td>thyroid</td>
<td>0.199</td>
<td>0.460</td>
<td>crabs</td>
<td>-0.081</td>
<td>0.044</td>
</tr>
<tr>
<td>segmentation</td>
<td>-0.284</td>
<td>0.378</td>
<td>segmentation</td>
<td>-0.298</td>
<td>0.495</td>
</tr>
<tr>
<td>crabs</td>
<td>-0.385</td>
<td>0.037</td>
<td>boat</td>
<td>-0.429</td>
<td>0.511</td>
</tr>
<tr>
<td>noisy-lines</td>
<td>-0.599</td>
<td>0.161</td>
<td>noisy-lines</td>
<td>-0.937</td>
<td>0.409</td>
</tr>
</tbody>
</table>

5 plots \(S_p^i, S_p^e \) and \(S_p^* \), and ensemble accuracy \(A^i \) as functions of \(k \) for thyroid and petal datasets. For the thyroid data, \(S_p^e \) matches the shape of \(A^i \) very well, whereas \(S_p^i \) does not. The combined measure exhibits stronger correlation with \(A^i \) than either of the two measures does individually. The petal data set has a poor match between ensemble stability and accuracy but a good match between \(S_p^i \) and \(A^i \). The combined stability measure is inferior to the individual measure but reaches its maximum at the right number of clusters \((k = 4)\). Thus if we use one of \(S_p^i \) or \(S_p^e \), we would have a good predictor of accuracy on one of the data sets and a poor predictor on the other. If we use \(S_p^* \), we would have a reasonable predictor on both datasets.

As argued earlier, stability would measure the quality of a particular clustering method.
rather than a general property of the dataset. According to Tables II and III, the combined stability index, S_p^*, fares better than both individual and ensemble stability indices. An interesting question here is whether stability-accuracy correlation is better when the dataset is easy or difficult to cluster. To answer this question, Figure 6 displays a scatterplot of 20 points corresponding to the datasets in the plane spanned by the maximum possible accuracy for each dataset, i.e., $\max_k A'(k)$, and the correlation between A' and S_p^* calculated across k.

With the exception of petals dataset, there is no point in the zone where $\max_k A'(k) > 0.6$ and Correlation $(A', S_p^*) < 0.5$. This suggests that if high accuracy is possible, the correlation will be reasonably strong. The exception is the petal dataset where high accuracy is possible but the combined index S_p^* may not pick it up because it is not well related to accuracy. However, Figure 5 shows that even for this worst case scenario, a good ensemble will be selected if we pick the ensemble with the maximum S_p^*. In fact, this will be the ensemble picked also by the individual measure, S_p^i, which exhibits much stronger correlation with accuracy for this data set.
Correlation \((A^t, S^*_p)\)

\[
\begin{array}{cccccccccccc}
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
& & & & & & & & & & & \\
\end{array}
\]

\[\max_k A^t(k)\]

Fig. 6. Correlation between \(A^t\) and \(S^*_p\) versus \(\max_k A^t(k)\) for the 20 datasets.

On the other hand, high correlation does not guarantee high accuracy as the contractions dataset demonstrates. We also note that there are no datasets for which \(\max_k A^t(k) < 0.25\) and Correlation \((A^t, S^*_p) > 0.5\).

In other words, if high accuracy is possible, it is likely that the stability index might work well for choosing a good ensemble. If high accuracy is not possible, applying the index will do no harm as the result will not be useful anyway.

E. How good is ensemble stability as a cluster validity measure?

To answer this question, we consider the following ways for determining the number of clusters

1) True \(k\). We assume that there is an oracle to give the true number of clusters for each dataset. With reservations explained above, we assume that the number of clusters for the real datasets is equal to the number of classes.

2) \(k\)-total. Consider the whole ensemble of 2500 clusterers. The consensus matrix
for the ensemble is submitted as the similarity matrix to the single linkage procedure acting as consensus function. \(k \)-total is the number of clusters corresponding to the largest jump of the distance criterion function. This is a traditional way of choosing the number of clusters when using single linkage.

(3) \(k \)-majority. Consider now the 100 ensembles of 25 clusterers each. The consensus matrix of each ensemble was submitted to single linkage in order to get the ensemble partition. The stopping \(k \) is again the number of clusters corresponding to the largest jump in the criterion for a particular ensemble. \(k \)-majority is the value most often selected among the 100 suggested \(k \)’s.

(4)-(8) are the numbers of clusters obtained through the maxima of the 5 stability indices explored in this study.

(9) Best \(k \). The maximum of the ensemble accuracy is identified together with the corresponding \(k \). This is again a type of oracle solution which will gauge the maximum achievable accuracy for a particular dataset.

The number of clusters produced by an ensemble was further compared to an empirically set threshold. If the suggested number of clusters exceeded 80% of the number of points in the data, the number was reassigned to 1, and no cluster structure was reported. Also, since we limited the study to \(K_{\text{max}} = 20 \) clusters, all numbers obtained for \(k \)-total and \(k \)-majority greater than 20 were reassigned to 20.

Table V shows the suggested number of clusters, \(k^* \) and the corresponding ensemble accuracies, \(A^e(k^*) \), for the 20 datasets.

For comparison, Table VI displays the averaged percentage achievement of \(A^i, A^c \) and \(A^t \) for the suggested \(k \), as in Table V. The percentage achievement of method \(X \) is the achieved accuracy \(A \) divided by the maximum possible \(A \) for this data set across all \(k \) multiplied by 100. Shown also are the average ranks of the 8 methods for suggesting \(k \). The best-\(k \) was excluded from this comparison because it will always give the best
TABLE V
Suggested number of clusters, k^* and the corresponding ensemble accuracies, $A_e(k^*)$

<table>
<thead>
<tr>
<th>Dataset</th>
<th>k (true)</th>
<th>k-total</th>
<th>k-maj</th>
<th>$(S_i^m)_{np}$</th>
<th>$(S_e^m)_{np}$</th>
<th>$(S_i^p)_{sp}$</th>
<th>$(S_e^p)_{sp}$</th>
<th>k^*</th>
<th>best k</th>
</tr>
</thead>
<tbody>
<tr>
<td>boat</td>
<td>3 (0.42)</td>
<td>2 (0.34)</td>
<td>2 (0.34)</td>
<td>2 (0.34)</td>
<td>20 (0.28)</td>
<td>2 (0.34)</td>
<td>20 (0.28)</td>
<td>2 (0.34)</td>
<td>7 (0.48)</td>
</tr>
<tr>
<td>contractions</td>
<td>2 (0.02)</td>
<td>12 (0.24)</td>
<td>2 (0.02)</td>
<td>3 (0.04)</td>
<td>2 (0.02)</td>
<td>3 (0.04)</td>
<td>14 (0.23)</td>
<td>13 (0.24)</td>
<td>11 (0.24)</td>
</tr>
<tr>
<td>crabs</td>
<td>2 (0.03)</td>
<td>2 (0.03)</td>
<td>20 (0.01)</td>
<td>2 (0.03)</td>
<td>20 (0.01)</td>
<td>2 (0.03)</td>
<td>20 (0.01)</td>
<td>4 (0.03)</td>
<td>3 (0.03)</td>
</tr>
<tr>
<td>difficult-d</td>
<td>2 (0.26)</td>
<td>4 (0.53)</td>
<td>2 (0.26)</td>
<td>5 (0.56)</td>
<td>7 (0.58)</td>
<td>4 (0.53)</td>
<td>7 (0.58)</td>
<td>7 (0.58)</td>
<td>6 (0.58)</td>
</tr>
<tr>
<td>easy-d</td>
<td>2 (0.60)</td>
<td>3 (0.74)</td>
<td>3 (0.74)</td>
<td>2 (0.66)</td>
<td>3 (0.74)</td>
<td>2 (0.66)</td>
<td>3 (0.74)</td>
<td>3 (0.74)</td>
<td>3 (0.74)</td>
</tr>
<tr>
<td>4-gauss</td>
<td>4 (0.90)</td>
<td>6 (0.97)</td>
<td>5 (0.95)</td>
<td>5 (0.97)</td>
<td>6 (0.97)</td>
<td>5 (0.95)</td>
<td>6 (0.97)</td>
<td>6 (0.97)</td>
<td>6 (0.97)</td>
</tr>
<tr>
<td>glass</td>
<td>6 (0.24)</td>
<td>6 (0.24)</td>
<td>2 (0.02)</td>
<td>2 (0.02)</td>
<td>2 (0.02)</td>
<td>2 (0.02)</td>
<td>19 (0.28)</td>
<td>6 (0.24)</td>
<td>10 (0.29)</td>
</tr>
<tr>
<td>halfrings</td>
<td>2 (0.98)</td>
<td>3 (0.81)</td>
<td>2 (0.02)</td>
</tr>
<tr>
<td>ionosphere</td>
<td>2 (-0.01)</td>
<td>4 (-0.02)</td>
<td>20 (0.20)</td>
<td>2 (-0.01)</td>
<td>2 (-0.01)</td>
<td>2 (-0.01)</td>
<td>20 (0.20)</td>
<td>20 (0.20)</td>
<td>20 (0.20)</td>
</tr>
<tr>
<td>iris</td>
<td>3 (0.60)</td>
<td>2 (0.57)</td>
</tr>
<tr>
<td>noisys</td>
<td>2 (0.25)</td>
<td>2 (0.25)</td>
<td>2 (0.25)</td>
<td>19 (0.12)</td>
<td>2 (0.25)</td>
<td>19 (0.12)</td>
<td>20 (0.12)</td>
<td>20 (0.12)</td>
<td>4 (0.35)</td>
</tr>
<tr>
<td>petals</td>
<td>4 (0.75)</td>
<td>2 (0.35)</td>
<td>2 (0.35)</td>
<td>4 (0.75)</td>
<td>2 (0.35)</td>
<td>4 (0.75)</td>
<td>2 (0.35)</td>
<td>4 (0.75)</td>
<td>5 (0.76)</td>
</tr>
<tr>
<td>respiratory</td>
<td>2 (0.04)</td>
<td>3 (0.09)</td>
<td>3 (0.09)</td>
<td>3 (0.09)</td>
<td>14 (0.03)</td>
<td>3 (0.09)</td>
<td>12 (0.04)</td>
<td>3 (0.09)</td>
<td>4 (0.09)</td>
</tr>
<tr>
<td>regular</td>
<td>16 (1.00)</td>
<td>16 (1.00)</td>
<td>16 (1.00)</td>
<td>4 (0.24)</td>
<td>16 (1.00)</td>
<td>4 (0.24)</td>
<td>16 (1.00)</td>
<td>17 (0.98)</td>
<td>16 (1.00)</td>
</tr>
<tr>
<td>saturn</td>
<td>2 (0.02)</td>
<td>2 (0.02)</td>
<td>2 (0.02)</td>
<td>10 (0.03)</td>
<td>20 (0.04)</td>
<td>8 (0.02)</td>
<td>4 (0.02)</td>
<td>19 (0.04)</td>
<td>17 (0.04)</td>
</tr>
<tr>
<td>segment</td>
<td>7 (0.25)</td>
<td>2 (0.00)</td>
<td>2 (0.00)</td>
<td>4 (0.12)</td>
<td>2 (0.12)</td>
<td>4 (0.12)</td>
<td>2 (0.12)</td>
<td>2 (0.12)</td>
<td>19 (0.45)</td>
</tr>
<tr>
<td>soybean</td>
<td>4 (0.74)</td>
<td>3 (0.65)</td>
<td>3 (0.65)</td>
<td>2 (0.48)</td>
<td>3 (0.65)</td>
<td>2 (0.48)</td>
<td>3 (0.65)</td>
<td>3 (0.65)</td>
<td>5 (0.81)</td>
</tr>
<tr>
<td>spirals</td>
<td>2 (0.11)</td>
<td>2 (0.11)</td>
<td>20 (0.13)</td>
<td>20 (0.13)</td>
<td>4 (0.14)</td>
<td>20 (0.13)</td>
<td>20 (0.13)</td>
<td>20 (0.13)</td>
<td>6 (0.15)</td>
</tr>
<tr>
<td>thyroid</td>
<td>3 (0.34)</td>
<td>12 (0.46)</td>
<td>20 (0.24)</td>
<td>2 (0.19)</td>
<td>2 (0.19)</td>
<td>2 (0.19)</td>
<td>7 (0.55)</td>
<td>5 (0.49)</td>
<td>7 (0.55)</td>
</tr>
<tr>
<td>wine</td>
<td>3 (0.32)</td>
<td>6 (0.29)</td>
<td>2 (0.29)</td>
<td>2 (0.29)</td>
<td>20 (0.13)</td>
<td>2 (0.29)</td>
<td>8 (0.27)</td>
<td>2 (0.29)</td>
<td>3 (0.32)</td>
</tr>
</tbody>
</table>

The tables show that the combined stability index is the best cluster validity index among the 8 compared ones, including the true number of clusters. As mentioned
before, the true number of clusters may not be the optimal number for which a particular clustering algorithm will disclose, to its best potential, the structure in the data. Cluster ensembles often produce better results for a number of clusters different from true k. The combined stability index appeared to be able to identify, if not the optimal k, then a close rival. It should be noted however that given this number of experiments the differences between the 8 methods were not found to be statistically significant according to the Friedman Two-Way ANOVA.

One possible explanation for the lack of statistical significance of the differences is that the only parameter that is altered is the number of clusters, k. The clustering method is the same in all experiments, an ensemble of 25 clusterers. Because of this, multiple ties can be expected, as seen in Table V, corresponding to the same ensemble accuracy. Thus the total rankings of the methods are likely to be similar.

Note that while the real data sets were chosen randomly, the artificial sets were designed with specific difficulties in mind. They do not represent a random sample from data sets which may occur in practice; they are rather special cases, some of them intentionally created to be impossible to solve with k-means. Hence, a statistical conclusion based on the current selection of data sets is not necessarily valid in the general case.

Finally, to show how close the decision by $k \left(S_p^* \right)$ is to the maximum possible accuracy, Figure 7 plots a bar graph with the maximum A^t for the datasets (grey), and the corresponding accuracy obtained for $k \left(S_p^* \right)$ clusters. The combined stability index S_p^* gives close to optimal performance on the large majority of the datasets.

V. Summary and Conclusions

Stability of clustering algorithms relying on a random component is an important issue. High stability across different runs is considered to be an asset. We examined
stability of cluster ensembles consisting of k-means clusterers, each clusterer ran with a random initialization and with a random assignment of k. The stability of the ensemble was evaluated and compared to the stability of the individual k-means for values of k from 2 to 20. The questions addressed by the experiment and the answers found are summarised below.

(1) Are ensembles more stable than individual clusterers? Generally, yes. This is more clearly expressed for larger k (Figure 3). We note however, that the true number of clusters for the datasets in this study is relatively small, which means that the dominance between individual stability and ensemble stability around the true number of clusters is not clear-cut.

(2) Is ensemble stability related to ensemble accuracy? We discovered an interesting phenomenon about stability-accuracy relationship. While for some datasets $S^e(k)$ and $A^e(k)$ exhibited almost perfect positive correlation (0.97, for the glass data), for other datasets, almost perfect negative correlation was observed (-0.93, for the crabs data). Thus we introduced a combined stability index, S_p^*, aimed at preserving the chance for finding a suitable k. If we use only the ensemble stability index for cluster validity, we might miss a peak of stability around the true number of clusters detected by the
individual stability index. An example of this phenomenon is the result for the boat dataset in Table V. The ensemble on its own suggests $k(S_p) = 20$ clusters (accuracy 0.28). The combined index agrees with the individual index on 2 clusters (accuracy 0.34). An example of the opposite case is the ionosphere dataset where the initial peak of the individual stability at $k = 2$ (the true number) is not sufficient to pull up the combined index to reach maximum at $k = 2$. Even though the true number of clusters is not recovered by the combined index, the accuracy of the ensemble is better for $k = 20$ as chosen by the ensemble and subsequently by the combined index. In general, $S^*(k)$ correlated reasonably with $A^e(k)$ and $A^t(k)$ although, again strongly varying across datasets (Tables II, III and IV). In reality, we will not have true labels and will not know which of the two situations we are in. The best option is to use $S^*(k)$ as it has the fewer number of negative correlations compared to the other 4 stability indices.

We looked further to single out the datasets with negative correlations. The scatter-plot in Figure 6 suggests that if high accuracy is possible, it is likely that the stability index might correlate well with the accuracy (points in the top right corner).

(3) How good is ensemble stability as a cluster validity measure? Here we followed a hypothesis strongly motivated and used for cluster validity in the relevant literature. This hypothesis states that a point of stability of a clustering algorithm corresponds to a structure found in the data. Therefore we used the maximum stability measures to pick the number of clusters. Without an oracle, the next most widely used heuristic for selecting number of clusters is cutting the dendrogram of a hierarchical clustering algorithm at the largest jump of the distance criterion. We used this method in two variants: with an ensemble of 2500 clusterers, and as the majority k of 100 ensembles of 25 clusterers each. The combined stability proposed here gave best results compared to pairwise and non-pairwise individual and ensemble stabilities (Table V). Curiously, small improvement of the clustering accuracy was also observed when cluster ensembles
were assigned k found through the combined stability index, $S_p^*(k)$, compared to the known (assumed true) number of clusters.

There are many open questions here. First, the findings of this study suggest a methodology for measuring cluster validity. As a large number of clusterers will be produced, and previous studies suggest that large ensembles fare better [16,26], we may use a large ensemble anyway. In this paper we considered both $A^e(k)$ (averaged across the 100 ensembles of 25 clusterers) and $A^t(k)$ (for the whole ensemble of 2500 clusterers). The overall results with the whole ensemble were slightly better although to verify this statistically, a number of large ensembles have to be constructed. The clustering procedure is then the following:

(i) Choose K_{max}, the ensemble size L and number of ensembles T;
(ii) Generate $L \times T$ k-means clusterers with random k from 2 to K_{max};
(iii) Group the clusterers randomly into T ensembles of L and evaluate $S_p^*(k)$ using (1), for $k = 2, \ldots, K_{\text{max}}$;
(iv) Find $k^* = \arg \max_k \{ S_p^*(k) \}$;
(v) Pool the $L \times T$ clusterers together, calculate the consensus matrix M, and feed it as a similarity matrix to a single linkage clusterer. Cut the dendrogram at k^* clusters and return the labeling P^*.

It is interesting to find out how stable and consistent the results would be for smaller L and T than considered here, and probably for larger K_{max}.

Another open question is whether findings similar to ours will hold for different types of base clusterers and consensus functions. We chose k-means as the base clusterer and single linkage as the consensus function because they are simple and efficient as found
by many authors. Clearly, for some datasets used here, k-means and ensembles thereof (with the chosen number K_{max}) were inadequate, e.g., crab, saturn, boat, respiratory and two-spirals. Path-based clustering would have been a suitable alternative [9]. Without a prior knowledge or at least hypothesis about the type of clusters, we cannot predict which method will be more suitable. Therefore, experiments with k-means ensembles and path-based ensembles should be carried out on the whole variety of datasets, not only the ones which are known to have benefited from a particular clustering method. It will be interesting to keep the collection of datasets and extend the study to other clustering methods and ensembles as well.

In this paper we only evaluated stability with respect to the intrinsic randomness of k-means and k-means ensembles. Many previous studies use re-sampling or sub-sampling of the dataset. A parallel can be drawn with stability estimation in supervised learning based on small alterations of the training data [3, 6]. Theoretical results for clustering methods and ensembles can be sought following this pattern. The stability indices considered here can be applied without change to ensembles of different structures, diversifying approaches and consensus functions. However, the answers to the three main questions offered here may not be valid for other ensemble methods. In other words, there may be ensemble types for which stability is a much better predictor of ensemble accuracy.

Finally, stability and rather stability-plasticity dilemma for on-line clustering and on-line cluster-validity presents a challenging extension of this study.

Acknowledgements

This study was carried out as a part of INTAS project #YS04-83-2942.
Appendix

Below is a brief explanation of the two real datasets contractions and respiratory. The data can be downloaded from http://www.informatics.bangor.ac.uk/~kuncheva/patrec1.html

Contractions. This dataset comes from wireless capsule endoscopy [36]. The problem is to detect intestinal contractions in video images sent by a small capsule traveling along the intestinal tract. Contractions which are of interest to the physician constitute about 1% of the video time, therefore automatic labeling in preparation for further inspection is necessary. In a video sequence of 9 frames, a contraction is represented as the lumen progressively closing and reopening. Twenty seven features were extracted using basic image descriptors: mean intensity of each frame (9 features); hole size of each frame (9 features) and global contrast of each frame (9 features). Two classes are considered: contractions and non-contractions. The 98 objects (49 in each class) were manually selected to represent the most clear examples of the classes. Note that the prior probabilities for the two classes cannot be evaluated as the sample proportions.

Respiratory. The respiratory dataset consists of the clinical records (17 features) for 85 newborn children with two types of respiratory distress syndrome (RDS):- Hyaline Membrane Disease (HMD) and non-HMD. The two classes need urgent and completely different treatments, therefore an accurate RDS classification is crucial within the first few hours after delivery.

References

