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Abstract

A measure of stability for a wide class of pattern
recognition algorithms is introduced to cope with over-
fitting in classification problems. Based on this con-
cept, constructive methods for designing effective sta-
ble algorithms are developed. New algorithm is repre-
sented as convexr combination of the initial algorithms
with weights that depend both from the location of the
point being classified and from the degree of local stabil-
ity of each algorithm. Either a set of parametric algo-
rithms from the same model or algorithms that belong
to different models may be used for such fusion.

1. Introduction

Classifier fusion is considered to be a promising way
in improving the performance of pattern recognition al-
gorithms. Many authors proposed different ways of fus-
ing classifiers ( [5], [8], [10], [6]). Conceptually, we may
separate out two main paradigms: data independent
and data dependent classifier fusion. The first means
that a measure of influence of each algorithm is con-
stant among the whole objects space. These methods
are easier to build and generally represent some kind
of algorithms voting [5]. They improve classification if
the following assumption is right: At any (or at least at
most) point from the objects space, the majority of al-
gorithms work ”well” in some sense. Then their union
may become better than the best of initial algorithms.
Otherwise data-independent fusion can hardly improve
performance. Data-dependent classifier fusion means
that the coefficients which characterize the influence of
each classifier depend on the location of the given point.
The most simple case is to use ”winner-takes-it-all”
weighting functions. Such approach is called dynamic

classifier selection. In this case only one coefficient has
non-zero value i.e. we select only one classifier of the
initial algorithms according to some rule and use it for
further classification ( [8], [10], [2] ). There are also
more sophisticated concepts with continuous weight-
ing functions, but they require special procedures of
training which are not trivial in general case [4]. Re-
cently Jin and his colleagues proposed data-dependent
boosting concept for improving robustness of classical
AdaBoost algorithm [3]. But the ideas contained in
their work are unlikely to be implemented directly to
fusion of various classifiers which belong to different
families.

In this paper we present an approach, which is based
on simultaneous increase of classifiers efficiency (the
rate of correctly classified objects from the validation
set) and stability. The last requirement should improve
generalization capability of the algorithm. The meth-
ods of statistical learning theory allow to estimate the
tendency to overfit (e.g. by means of VC-dimension
[9]) for the given algorithm. Nevertheless we still can’t
say how much the algorithm is overtuned to the par-
ticular task when the training is finished. That’s why
some indirect values which could characterize the gen-
eralization capability are needed. A possible solution is
to measure how much the algorithm’s output changes
if the inputs vary slightly. It seems obvious that large
fluctuations of outputs in the regions where the concen-
tration of objects is high, lead to poor generalization.
We suggest to consider this information together with
algorithms competence when fusing them. During clas-
sification of arbitrary object accurate and stable in its
neighborhood algorithms should have greater weights.
In the next section we define a key notion of the pa-
per. Section 3 describes the way of classifier fusion with
the aid of convex stabilizer and section 4 shows some
experimental results.



2. Instability of recognition algorithms

In what follows we consider algorithms, which re-
turn the vector of estimates. Each of its components is
the estimation of posterior probability that a concerned
object belongs to the given class.
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where Pt = {(p1,...,p1)| Xh_, ok = 1,p > 0)}. Here
n is number of features and [ is number of classes. So

we may consider each recognition algorithm as a set of
[ functions of n variables
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If the features posses real values, it seems natural to de-
mand that all P*(S) = pj. should be continuous. Note
that a large number of algorithms can be represented
in form (1). All such classifiers may be used for further
fusion.

After training is finished, we would like to use those
algorithms which are less overtuned. Since the direct
measuring of actual overfitting degree is unavailable,
some indirect values should be involved. The simplest
example of such value is gradient of posterior prob-
abilities in the given point. Similar ideas were used
in double-backpropagation conformably to neural net-
works [1].

Definition 1. The instability of recognition algo-
rithm on the i*" object of the sample S; is expressed
by the following formula:

ZA(S;) = |[VP(S))]? (2)

where P(S) = (P,(S),..., P(S)).

In cases when the answers of algorithm are not ex-
pressed in functional form directly or the inputs are
discrete and hence the derivative can’t be evaluated
analytically, its difference analogue could be used.
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If we want to select just one algorithm among the initial
set of classifiers, which showed acceptable performance
on the training sample, then we should be able to es-
timate the degree of instability in the entire objects
space.

Definition 2. The instability of recognition algo-
rithm (according to p-measure) is expressed in the fol-
lowing way:

Zs = [ Zayiuts) (3)

As there is only finite number of available objects,
the integral in (3) turns to summation among the ob-
jects from validation set X = {S;}{_;. Then measure
u can be defined like

u(B) = |{Si € B}|

Generally, validation set should differ from the train-
ing sample because many algorithms (e.g. Q-nearest
neighbors) do not perform on the training sample the
same way as they do on arbitrary objects.
Definition 3. Classifier A; is more stable than clas-
sifier Ag if
ZA1 > ZA2

An absolutely stable classifier is easy to construct.
For instance, this is the one whose posterior estimates
are constant in the entire object space. This example
clearly shows that the instability of recognition algo-
rithms considered regardless of its effectiveness (i.e. of
its performance on validation set) cannot serve as a
single measure of the preference of the corresponding
classifier. Therefore, the instability value can be used,
for example, for comparing two algorithms, which have
acceptable error level on the validation set. In this case,
a more stable classifier is preferable. Our further goal
is, given a set of algorithms, to construct a new one
that is more stable and at least as effective as the best
of initial ones. This process is called stabilization of
recognition algorithms.

3. Convex stabilizer

Consider the following problem. Given p classi-
fiers A, ..., Ap construct a new algorithm A such that
Za < ming—, . pZa,. The initial classifiers may be-
long either to the same parametrical model (e.g. neural
networks on which the quality functional has local ex-
tremum) or have different concept and structure. The
only demand is they operate in the similar terms. In
our case this means that they should return posterior
probabilities. Let T'(j) = argming_, ., Z4,(S;) be
the index of the most stable recognition algorithm on

h object.

Definition 4. An algorithm A is said to be derived
from Ay, ..., A, by applying a convex stabilizer if A can
be represented as a convex combination of the original
classifiers:

S0 wy ()P, (S)
23:1 w;(5)

Where ¢ is number of objects in the validation set,
F:{l,...,q} — {1,...,p} is a function defining the

PE(S) = (4)



index of the best in some sense classifier for each object
in the validation set and w; : R" — R are weight
functions having the following properties:

w;(S) =0 if p(S,S;) — o0

_wi(5)
i wi(S)

Definition 5. A recognition algorithm is called con-
tinuous if all corresponding functions P¥(S) are con-
tinuous in R™.

Note, that setting w;(S) equal to unity if p(S, S;) <
p(S,S) for any k and equal to zero otherwise, we ob-
tain a convex stabilizer that performs according to the
nearest-neighbor rule; i.e. the algorithm that is the
best for the nearest object of the validation set is ap-
plied to the object being recognized. It is easy to see
that the resulting classifier is not generally continu-
ous. For example, it may be discontinuous at points
equidistant from several objects of the validation set.
This approach can be used when the features take no
more than a countable number of values (discrete fea-
tures). Consider another convex stabilizer obtained by
substituting the following values into (4)

F(j) =T(@) (5)
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It is easy to see that applying convex stabilizer 5, 6
to continuous algorithms we receive also a continuous
algorithm.

Theorem 1. Suppose that algorithm A is obtained
from the original family of classifiers by applying a con-
vex stabilizer (5), (6). Then its instability does not ex-
ceed the instability of the most stable classifier of this
family.

Now consider validation set a little bit closer.

Definition 6. An object in the validation set is reg-
ular with respect to set of classifiers A;,..., A, if there
exists at least one classifier which recognizes the given
object correctly. Otherwise the object is irregular.

To continue we introduce some notation. Denote

O(j) = {t|A; recognizes S; correctly}
i) = in Z ,
R(j) = arg min Z4,(5;)

Consider a convex stabilizer in which the weight func-
tions are defined by (6) and
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By effectiveness of algorithm, we mean the fraction
of errors on the validation set. Then the following the-
orem is true

Theorem 2. The algorithm A constructed by ap-
plying convex stabilizer (6), (7) to a set of classifiers
A1, ..., Ay is no less effective than the most effective
classifier in this set. Moreover, its instability on each
object of the validation set does not exceed the instabil-
ity of the most stable (on this object) classifier correctly
recognizing the given object if the latter is regular, and
does not exceed the instability of the most stable (on
this object) classifier from the entire initial set if the
object is irregular.

This theorem means that by applying convex stabi-
lizer one may get both effective and stable (hence less
overtrained) classifier.

4. Experimental results

The concepts described above were successfully im-
plemented as a part of project for creating univer-
sal program complex of recognition and data-mining
"RECOGNITION (LOREG)” [12]. This system made
possible to undertake comparative analysis of classifier
fusion methods. As initial families of algorithms, there
were used about 10 models including multilayer per-
ceptrons, support vector machines, some logical, com-
binatorial and statistical methods. For some methods
(e.g. linear Fisher discriminant) the necessary changes
were made in order them to return the vector of pos-
terior probabilities. The algorithms parameters were
selected according to the best performance on the vali-
dation set. Convex stabilizer (CS) was compared with
several other fusion methods like committee methods
(such as taking maximum (MAX), minimum (MIN),
product (PRO), mean (AVR) and simple mode ma-
jority (MAJ) of posterior probabilities) [5], dynamic
Woods (WOO) method [10], Naive Bayes (NB) ap-
proach [11], decision templates (DT) with Euclidian
distance in the space of profiles [7], clustering and se-
lection (CLU) method [6]. The comparison was held
according to three applications, which represent typi-
cal kinds of recognition tasks. The first was pneumo-
nia diagnostics (7 classes, 8 features, 158 objects in the
training sample), second was melanoma diagnostics (3
classes, 33 features, 48 objects in the training sample)
and the last was latin letters optical recognition (26
classes, 16 features, 2200 objects in the training sam-
ple). The validation set had approximately the same
size and on melanoma task it coincided with the train-
ing sample due to the lack of objects. The results of ex-
periments (percent of correctly recognized objects from
the independent test sample) are shown in the figure 1.



The last line shows the best classifier (SB) among the
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Figure 1. The performance of different aggre-
gation schemes on three real-life tasks.

initial ones. These (and also some other experiments)
made clear that a convex stabilizer gives the result at
least not worse than best fusion methods in many cases.
On the tasks with small samples it tends to outperform
other methods significantly improving the recognition.
Another good property of convex stabilizer is that de-
spite of other fusion methods, as a rule it doesn’t make
the performance worse than single best classifier. The
main disadvantage is high computational complexity
and hence relatively long time of learning and recogni-
tion. Choosing another norm in (2) and implementing
some heuristics help to reduce the computational time.

5. Conclusion

Stabilization of recognition algorithms is a possible
way of building more effective and less overtrained clas-
sifiers. The main idea is to perform fuzzy splitting of
the objects space into several areas and assign bigger
weight to those classifiers that are more stable (have
smaller gradient of posterior estimates) and still rec-
ognize the objects correctly from some neighborhood.

Classifiers are fused by means of taking convex com-
bination of their outputs, with coefficients depending
on the point in objects space. The corresponding con-
struction called convex stabilizer was introduced. Some
theoretical results found for such concept were briefly
discussed. The realization of convex stabilizer proved
that this method of classifier fusion can be used for im-
proving the recognition performance especially on the
small samples.
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