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Abstract

 

—In this work, an attempt is made to introduce a measure of stability for a wide class of pattern rec-
ognition algorithms. Based on this notion, constructive methods for the synthesis of correct (or close to correct)
stable algorithms are built. Such algorithms can be derived either from a set of parametric algorithms of the
same model or from the algorithms which belong to different models.
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1. INTRODUCTION

In pattern recognition theory, a quality functional
which depends on the number of errors of the algorithm
in a test sample is regarded as a commonly accepted
efficiency factor of the recognition algorithm. One of
the formulations of the pattern recognition problem
involves the construction of an algorithm that does not
commit errors on the test sample [1]. Such algorithms
are known as 

 

correct algorithms

 

. When solving practi-
cal problems, one assumes that the correct algorithm
exhibits error-free operation upon classification of orig-
inally unclassified objects. However, this assumption is
not always valid. If the sizes of the learning and test
samples are small and the number of the parameters
optimized is large, algorithm overfitting takes place.
This means that the algorithm correctly recognizes the
objects from the test sample and degenerates at the
remaining objects (yields incorrect results, refuses rec-
ognition, etc.). Conventional means of eliminating such
a phenomenon are deliberate limitation of the paramet-
ric family of the algorithms [2] and simultaneous use of
several algorithms [3, 4]. In this work, we propose an
approach that makes it possible to simultaneously
increase the efficiency of the algorithm on the test sam-
ple and its stability against variations in the attributes of
the object.

Below, we analyze the algorithms represented as

 

A

 

 = 

 

B

 

 

 

°

 

 

 

C

 

, where 

 

B

 

 is the 

 

recognition operator

 

 that cal-

culates the 

 

classification estimate

 

 and 

 

C

 

 is the 

 

decision
rule

 

 making the estimate-based classification [1]. Let
us consider a standard problem of the recognition of
objects represented by vectors in an 

 

n

 

-dimensional real
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space with 

 

l

 

 classes. In this case, the recognition oper-
ator is given by

where (

 

S

 

) = 1.

Apparently, any algorithm calculating the attributes
of the classification estimate can be represented in such
a way owing to the normalization of the estimates
obtained. This is valid not only for conventional models
of estimate calculations but also for neural networks,
algorithms using potential functions, and for various
types of fuzzy classifiers. Further, without loss of gen-
erality, we assume that appropriately scaled attributes
do not correlate with each other. We define the objects
of the test sample by 

 

S

 

j

 

, 

 

j

 

 = 1, …, 

 

q

 

.

2. INSTABILITY 
OF RECOGNITION OPERATORS

Normally, the fitting of the parameters of the recog-
nition algorithm employs a test sample. It is expedient
to perform the correction of algorithms in the space of
the classification estimates rather than in the space of
the decision, because the family of the correction oper-
ators in the latter case is poor [1]. Similar reasoning is
valid for the stabilizing operations. Therefore, the main
objects for the further analysis are the recognition oper-
ators. We assume that a recognition operator consists of

 

l

 

 functions of 

 

n

 

 variables. In this case, it is expedient to
use an analog of the difference gradient to characterize
the stability of the operator in the point.

 

Definition 1.

 

 The instability of recognition operator

 

B

 

 on the 

 

j

 

th object of the test sample is defined by

,

where 

 

e

 

i

 

 is a unit vector of the corresponding coordinate
and 

 

ε

 

 = (
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Remark.

 

 The instability of the recognition operator
depends on the shift 

 

ε

 

k

 

. This parameter can be inter-
preted as a mean distance from recognized objects of
the 

 

k

 

th class to the nearest object of the test sample of
their own class. This parameter can be chosen based on
either 

 

a priori

 

 assumptions or the information contained in
the test sample, for example, in the following way:

,

where 

 

ρ

 

(

 

S

 

i

 

, 

 

S

 

j

 

) is the distance between the correspond-
ing objects and 

 

ρ

 

(

 

K

 

k

 

, 

 

K

 

m

 

) is the distance between the
classes calculated by using the objects of the test sam-
ple.

 

Definition 2.

 

 The instability of recognition operator

 

B

 

 (on the test sample) is defined as

.

 

Definition 3.

 

 The recognition operator 

 

B

 

1

 

 (and the
corresponding recognition algorithm 

 

A

 

1

 

) are more sta-
ble than the recognition operator 

 

B

 

2

 

 (and the corre-
sponding algorithm 

 

A

 

2

 

) if

.

Further, we assume that 

 

ε is constant and omit the cor-
responding symbol.

It is easy to construct an absolutely stable recogni-
tion operator. For example, an operator all whose func-
tions are constants in the entire space of objects is abso-
lutely stable. It is clear from this example that the insta-
bility of the recognition operator considered separately
from its efficiency (i.e., the quality of operation on the
test sample) cannot be a single criterion for choosing an
algorithm. Therefore, one can use the instability of the
recognition operator (and, hence, of the recognition
algorithm) to compare two correct algorithms. In this
case, preference should be given to a more stable algo-
rithm. The further purpose is to construct a new opera-
tor which is more stable and, at least, no less effective
using the given set of recognition operators. We call this
process stabilization of the recognition algorithms. Let
us demonstrate that, in this case, one can preserve the
correctness of the algorithms.

3. SYNTHESIS OF A CORRECT STABLE 
RECOGNITION OPERATOR FROM A FAMILY

OF CORRECT OPERATORS

The formulation of the problem is as follows. We
have p recognition operators B1, …, Bp . The task is to
construct a recognition operator B such that ZB ≤

. Let T( j) = (Sj) be the index of

the most stable (on the jth object) recognition operator.

εk
1
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Definition 4.

 

 The recognition operator 

 

B

 

 is con-
structed from 

 

B

 

1

 

, …, 

 

B

 

p

 

 using a 

 

convex stabilizer

 

 if it
can be represented by a convex combination of the orig-
inal recognition operators:

(3.1)

where F: {1…

 

q

 

}  {1… 

 

p

 

} is a function that deter-
mines the index of the recognition operator for each
object of the test sample and w

 

j

 

: 

 

R

 

n

 

  

 

R

 

 are weight-
ing functions featuring the following properties:

 

Definition 5.

 

 Recognition operator 

 

B

 

 is 

 

continuous

 

if all the corresponding functions { } are
continuous in 

 

R

 

n

 

.

 

Remark.

 

 Assuming that w

 

j

 

(

 

S

 

) equals unity if 

 

∀

 

k

 

ρ

 

(

 

S

 

, 

 

S

 

j

 

) < 

 

ρ

 

(

 

S

 

, 

 

S

 

k

 

) (otherwise, it equals zero), we obtain
a convex stabilizer working by the nearest neighbor
rule, so that for the object recognized we use the recog-
nition operator which is best, in a sense, for the nearest
object of the test sample. In this case, the space of the
objects is split into nonintersecting preferable areas of
the corresponding algorithms. Such a scenario resem-
bles separating a space into competence areas [5]. It is
obvious that, generally, the resulting recognition oper-
ator is not continuous. The continuity can be violated at
points equidistant with respect to a few objects of the
test sample. Such an approach is acceptable if the orig-
inal recognition operators are represented by sets of
functions that take no more than a denumerable number
of values.

Below, we assume that

. (3.2)

Consider the convex stabilizer obtained by substituting
the following values into Eq. (3.1):

, (3.3)

(3.4)
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Lemma 1. Function wi(S)/ (S) is continu-

ous in Rn.
Proof. To prove this statement, it suffices to analyze

the behavior of the function at the points lying at the
distance ε from a certain object of the test sample Si . In
accordance with Eq. (3.2), if such an object exists, it is
unique. By making a forward substitution in expression
(3.4), we arrive at

The continuity of the function at the remaining points is
obvious due to the continuity of the corresponding
functions in expression (3.4). Therefore, the assumed
function is continuous over the entire space Rn and the
lemma is proven.

Theorem 1. The instability (on the test sample) of
recognition operator B constructed by applying a con-
vex stabilizer given by expressions (3.3) and (3.4) to the
original family of recognition operators does not
exceed the instability of the most stable of these opera-
tors.

Proof. Let us consider the instability of B on an arbi-
trary object Si of the test sample. In accordance with
expressions (3.3) and (3.4), in the ε neighborhood of
this object, the action of the recognition operator B is
identical to the action of the operator BT(i), which is the
most stable (among the operators of the original family)
operator on the ith object. The instability of the opera-
tor on the given object is completely determined by its
behavior in the corresponding ε neighborhood. There-
fore, the instability of the operator B on the ith object of
the test sample is exactly equal to the instability of the
operator BT(i) . Thus, the instability of B on the entire
test sample is

and the theorem is proven.
Statement 1. The following equality is satisfied for

any recognition operator B obtained by applying any
convex stabilizer:

.

Proof. In accordance with expression (3.1) and the
conditions of weighting functions, the action of opera-
tor B at point Sj is identical to the action of operator
BF(j). This means that the classification estimates coin-
cide and the statement is proven.

w jj 1=
q∑

wr S( )

w j S( )
j 1=

q

∑
----------------------

ρ Si S,( ) ε→
lim δir.=

ZB ZB T j( )( ) S j( )
j 1=

q

∑ ZBt
S j( )

t 1…p=
min

j 1=

q

∑= =

≤ ZBt
S j( )

j 1=

q

∑t 1…p=
min ZBtt 1…p=

min=

Γ B
k S j( ) Γ B F j( )( )

k S j( ) k 1…l j 1…q= = =

Theorem 2. If recognition operators B1…Bp are cor-
rect, the recognition operator B constructed by applying
the convex stabilizer given by expressions (3.3) and
(3.4) is also correct.

Proof. It follows from the previous statement that, at
any point of the test sample, the action of the operator
B is identical to that of one of the operators of the orig-
inal family. Each of these operators correctly recog-
nizes any object of the test sample. Therefore, the oper-
ator B also correctly recognizes all the objects of the
test sample. The theorem is proven.

Remark. Let all the recognition operators of the
original family possess continuous estimating func-
tions in the object space. Then, in accordance with
Lemma 1, the resulting recognition operator also exhib-
its this property.

Thus, by applying the aforementioned convex stabi-
lizer to the family of correct recognition operators, one
can obtain a more stable operator without violating the
correctness.

4. SYNTHESIS OF AN EFFECTIVE STABLE 
RECOGNITION OPERATOR FROM A FAMILY 

OF INCORRECT OPERATORS

In practical applications, we have to deal with fami-
lies of incorrect algorithms. Such families often belong
to the same parametric model of algorithms. These can
be algorithms at which the local extrema of the quality
functional are reached. The question arises if it is pos-
sible to construct correct algorithms on this family.

Definition 6. The object of a test sample is called
regular with respect to the family of the recognition
operators B1…Bp if at least one of these operators cor-
rectly recognizes the given object. In the opposite case,
the object is irregular.

Further, we assume that the family of algorithms is
sufficiently rich and the test sample does not contain
irregular objects. Let us introduce the following quan-
tities:

,

.

We consider a convex stabilizer obtained by substi-
tuting expression (3.4) and

(4.1)

into expression (3.1).

Theorem 3. The recognition operator B constructed
by applying the convex stabilizer given by expressions
(3.4) and (4.1) to the family of operators B1…Bp is cor-
rect, and its instability on each object of the test sample
is no greater than the instability of the most stable oper-
ator that correctly recognizes the corresponding object.

Θ j( ) t Bt correctly classifies S j{ }=

R j( ) ZBt
S j( )

t Θ j( )∈
minarg=

F j( ) R j( )≡
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Proof. The correctness of the constructed recogni-
tion operator follows from the representation of the set
Θ(j) and Statement 1. Let us consider its stability. It fol-
lows from expressions (3.2) and (3.4) that, in a certain
ε neighborhood of each object Sj , the operator B is iden-
tical to a certain operator BR(j). Such a neighborhood
completely determines the instability at the jth object.
Thus,

and the theorem is proven.

The last theorem offers a constructive way to build
correct stable algorithms in the absence of irregular
objects in the test sample. This procedure makes it pos-
sible to construct an algorithm complying with two
requirements (correctness and stability). In the pres-
ence of irregular objects, we introduce the notation

(4.2)

Let us consider a convex stabilizer in which the
weighting functions are given by expression (3.4) and
F(j) is represented by P(j). The efficiency of the recog-
nition operator is interpreted as the number of errors on
the test sample. Then, the following theorem is valid.

Theorem 4. The recognition operator B constructed
by applying the convex stabilizer given by expressions
(3.4) and (4.2) to the family of operators B1…Bp is no
less effective than the most effective operator of this
family, and its instability on each object of the test sam-
ple is no greater than the instability of the most stable
(at this object) operator which correctly recognizes the
corresponding object provided it is a regular object of
the sample, and is no greater than the instability of the
most stable (at this object) algorithm of the original
family in the case of an irregular object.

Proof. It follows from Statement 1 and formula
(4.2) that the constructed recognition operator correctly
classifies all regular (with respect to the given family)
objects of the test sample. Therefore, the errors are
made only on irregular objects. However, all the algo-
rithms of the original family commit errors on these
objects. The first statement is proven.

For the irregular (regular) object, the second state-
ment follows from Theorem 1 (3). Thus, the theorem is
proven.

It follows from the last two theorems that one can
simultaneously increase the efficiency and stability of
modern recognition algorithms applied to a specific
problem.

ZB S j( ) ZB R j( )( ) S j( ) ZBt
S j( ),≤=

j∀ 1…q t∀ Θ j( ),∈=

P j( )
T j( )  if  Θ j( ) ∅=

R j( ) otherwise.



=

5. EXAMPLE OF SYNTHESIS OF A STABLE 
RECOGNITION OPERATOR BY APPLYING 

A CONVEX STABILIZER
TO NEURAL NETWORKS

Let us consider a simple example of application of
the above theory. Suppose that it is necessary to classify
objects with features taking the values 1 and –1 into two
nonintersecting classes. The dimension of feature space
equals four. Let the learning sample contain four
objects of the first class S1 = (–1, –1, –1, –1), S2 = (–1,
1, –1, –1), S3 = (–1, –1, 1, –1), and S4 = (–1, –1, –1, 1)
and three objects of the second class S5 = (1, –1, –1, 1),
S6 = (1, 1, –1, 1), and S7 = (1, 1, 1, 1). For simplicity, we
assume that the test sample coincides with the learning
one. Suppose that we have two neural networks NN1
and NN2 which correctly classify the original objects
and whose activation functions are given by

Figures 1 and 2 show the structure of these functions
and their weighting coefficients (obtained, for example,
by random search).

The decision rule is written as

Figure 3 shows the work of both networks at the
remaining points. The objects of the test sample are in
bold face. For the remaining objects, the variants of
their classification by the first and the second networks
are indicated. Specifically, they yield opposite results in
point S = (–1, –1, 1, 1). A simple calculation of the
instability of the neural networks at ε = 1 yields the fol-

output
+1  if  w input,〈 〉 t≥

1–   if  w input,〈 〉 t.<



=

C B S( )( )
1  if  B S( ) 1 0,( )=

2  if  B S( ) 0 1,( )=

?  if  B S( ) 1 1,( ) or B S( ) 0 0,( ).= =





=
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Fig. 1. Structure and weighting coefficients of the NN1 net-
work.
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lowing values: Z1 = 17 and Z2 = 19. Based on the stabil-
ity criterion, preference must be given to the first neural
network.

One can improve the obtained results by applying
the following convex stabilizer to these neural net-
works:

,

Note that while building convex stabilizer we do not
consider the objects of the test sample on which both

F j( ) T j( )≡

w j S( )

=  

1/ p  if  ρ S S j,( ) ρ S Sk,( ) k∀≤ 1 q,=

j1 … j p: ρ S S j,( ), ,∃ ρ S S j1
,( ) … ρ S S jp

,( )= = =

1  if  ρ S S j,( ) ρ S Sk,( ) k∀< 1 q,=

0 otherwise.







networks exhibit equal values of instability. To calcu-
late the distances, we use the following metric:

.

Figure 4 shows how to choose the neural network
for classification of the given object. The objects of the
test sample where one of the networks is more stable
than another are boldfaced.

The constructed classifier recognizes a greater num-
ber of objects and appears to be more stable in compar-
ison to each of the original networks. Note that object
S = (–1, –1, 1, 1) is classified as belonging to the first
class, which is in agreement with its intuitive classifica-
tion. Figure 5 demonstrates the results of the work of
the classifier. In bold face, we show the objects of the
test sample.

ρ x y,( ) i xi yi≠{ }=
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Fig. 2. Structure and weighting coefficients of the NN2 net-
work.
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Fig. 3. Results of classification using original neural net-
works.
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6. CONCLUSIONS
In this work, we propose one of the possible meth-

ods for solving the problem of instability of modern
effective (in particular, correct) algorithms for pattern
recognition. After formalizing the notion of instability
of the recognition algorithm, one can employ stabiliz-
ing operations aimed at increasing the stability of the
algorithm. All operations are applied to recognition
operators that calculate the classification estimates,
which makes it possible to construct rather rich families
of stabilizing operations. We analyze in detail the con-
struction of a convex stabilizer enabling one to increase
the stability of the algorithm without changing its local
peculiarities. The methods obtained allow construction
of more stable but still effective algorithms.
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