
An Algorithm for Rule Generation in Fuzzy Expert Systems

Kropotov Dmitry
dkropotov@yandex.ru

Vetrov Dmitry
vetrovd@yandex.ru

Dorodnicyn Computing Centre of the Russian Academy of Sciences
Russia, 119991, Moscow, GSP-1,

Vavilova str. 40

Abstract

Although using fuzzy logic in control systems has be-
come widely established as an appropriate approach, its
application in area of pattern recognition and data min-
ing seems to be restricted. These systems have sev-
eral bottlenecks mainly concerning fuzzy rules genera-
tion and fuzzy sets forming. The state-of-the-art tech-
nics here is neuro-fuzzy approach which has some dis-
advantages. In the presented article there considered
an algorithm for rules generation based on alternative
principles and some ideas on defining fuzzy sets.

1 Introduction

At the present time fuzzy logic concept finds its ap-
plication in many areas of human knowledge. Thus
there exist a lot of successive projects of implementing
fuzzy logic in control systems [7]. The ability of the
theory to represent dependencies in linguistic terms fa-
cilitating understanding and managing the investigated
process [8] led to development of fuzzy expert systems
[5]. Such systems aimed for supervized learning or fore-
casting fall under the situation, in which we are given
a set of fuzzy sets for each feature and knowledge base
- a set of fuzzy rules. The successive system’s cre-
ation depends fully on happy choice of fuzzy sets and
rules appropriate for the current research field. It is a
common situation than experts can’t properly solve the
problem with forming of fuzzy sets and rules and hence
there is a need of providing some kind of automatic
means. The most of known software products intended
for fuzzy expert system’s development (MatLab, Cubi-
Calc, etc.) uses so-called neuro-fuzzy approach based
on attraction of neural networks for rule generation and
some heuristics of uniform partitioning for assigning of
fuzzy sets [2],[1]. The neuro-fuzzy approach has some

sufficient drawbacks:

• The fuzzy system with great number of generated
rules with relatively low significance level tends to
sufficient overfitting

• High rules dimensions lead to poor knowledge in-
terpretation and inability of deep understanding
for the current application field

• Great time of calculation taken from correspond-
ing problem of neural networks

The goal of this article is to establish rules generat-
ing algorithm which avoids the mentioned drawbacks
and at the same time provides an appropriate knowl-
edge base. In the next section such algorithm is con-
sidered in details. Section 3 gives some heuristic for
fuzzy sets assigning. In section 4 we demonstrate the
practicality of proposed approach using experimental
results and conclude with some discussion.

2 Rule generation

Consider the following decision-making task. There
are n parameters of the system ~X = (X1 . . . Xn) ∈ Rn,
which can be measured and one variable Y ∈ R to
be predicted. Our goal is to get a set of fuzzy rules
appropriate for our task with the aid of learning sample
{~xk, yk}p

k=1. Fuzzy rules will be formed in following
general form:

R : IF K1 ∨ K2 ∨ . . . ∨ Kq THEN Y ∈ Bk. (1)

where Ki is denotation for some conjunction:
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Here Xip is a value of ip-th feature and A
ip

kp
is kp-th

fuzzy set of ip-th feature. Let’s denote for some rule



R a set of conjunctions {K1, . . . , Kq} as a Sump(R)
– sumption of the rule and Bk as a Res(R) – re-
sult set of the rule. µA(x) : X → [0, 1] designates
a membership function of fuzzy set A. Then mem-
bership function of conjunction (2) will be µK(~x) =
min(µ
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Definition 1. Representativeness of rule is the
following value:

rep(R) , 1
p

p∑

j=1

max(µK1(~x
j), . . . , µKq (~x

j))

Definition 2. Effectiveness of rule is given by the
following formula:

eff(R) ,

p∑
j=1

min(max(µK1(~x
j), . . . , µKq

(~xj)), µBk
(yj))

p · rep(R)

In other words, representativeness is implicitly the
rate of precedents, which satisfy the sumption of the
given rule while effectiveness is implicitly the rate of
precedents from the sumption, which satisfy the rule
itself. We intend to generate rules, which have both
high representativeness and effectiveness.

The algorithm consists of two stages. On the first
stage we try to generate rules only with one conjunction
in their sumption while all other rules are generated on
the second stage.

2.1 Generation of conjunctive rules

Consider only the rules with one conjunction in their
sumptions. In this section we call the number of fuzzy
sets in conjunction (i.e. sumption) as order of the
rule.

Definition 3. Rule Rb is restriction of rule Ra if
the next two conditions are satisfied:

• Res(Ra) = Res(Rb)

• The sumption of rule Rb contains all fuzzy sets
from the sumption of rule Ra

During the rule restriction representativeness be-
comes lower while the effectiveness may become higher.
In the last case we will call restriction an effective one.

Set c1 and c2 - thresholds of representativeness and
effectiveness correspondingly. A rule is tolerable if
its effectiveness is more than c2 and representativeness
is more than c1. An algorithm given below (effective
restrictions method) allows finding all tolerable rules of
minimal possible order according to learning sample. It
is based on linear search over the rules order.

1. Fix Bk - result set of the rule.

2. Construct all possible rules of first order from the
fuzzy sets we have, i.e. rules of type IF xi1 ∈
Ai1

k1
, THEN y ∈ Bk.

3. Reject all rules that have rep(R) < c1.

4. If no rules remained then go to step 6. Otherwise
examine the effectiveness of residuary rules. If
eff(R) > c2 then the rule is tolerable and should
be moved to the list of final rules.

5. All other rules (if any) are used for restrictions
in a following way. Sumption of any rule being
restricted should be a subset of any other two
rules, which are being restricted to the same rule
of higher order. In other words, the union of sump-
tions of any two rules, which are restricted to the
same rule of higher order, is exactly the sumption
of this new rule (see Figure 1). If no new rules got,
then go to step 6. Otherwise go to step 3.

Figure 1. Restriction of rules to third and forth
order. Points represent fuzzy sets and contours
encircle rules sumptions.

6. If all result sets were examined then stop working,
otherwise increase k by one and go to step 1.

Consider the selection of c1 and c2 thresholds in de-
tails. The aim is to find all significant rules without
overtraining. In other words the rate of noise rules
should be low enough in order the rule system to be
adequate. It is clear that the effectiveness threshold
c2 = c2(rep(R)) should be higher with the decrease of
representativeness value. Let we have crisp (i.e. non-
fuzzy) sets. The rule is insignificant if the information
that object satisfies the rule sheds no light on its af-
filiation to the result set of the rule. Let’s check the
following statistical hypothesis:

P{yi ∈ Res(R)|~xi ∈ Sump(R)} = P{yi ∈ Res(R)}

Without loss of generality suppose uniform prior
probabilities, i.e. P{yi ∈ B1} = . . . = P{yi ∈ Br} =
1/r. Examine the value rep(R)eff(R)p. If the hypoth-
esis is right, we have n = rep(R)p Bernoulli trials with
the probability of success equals s = 1/r. If ns > 5



(this can be adjusted by setting c1 > 5r/p), according
to Moivre-Laplace theorem, the distribution can be ap-
proximated with a normal distribution ([6],[3]) with the
mean of ns and variance of σ2 = ns(1−s). This means
that:

eff(R) ∼ N(s, s(1− s)/n)

Fixing the level of significance α, we find the neces-
sary effectiveness threshold

c2 =
1
r

+
zα

√
r − 1

r
√

rep(R)p
(3)

where zα is fractile of standard normal distribution.
Now let’s exclude on each iteration from further

consideration the rules, which will not become toler-
able even under the most favourable conditions. These
are rules with so low effectiveness value which cannot
be made big enough after any restrictions. Suppose
that during restrictions the only objects to exclude
are those, which do not belong to Res(R) (the most
favourable case). The effectiveness of the rule will in-
crease in the fastest way with such restrictions. The
rule will be intolerable if its effectiveness is less than
c2 when its representation equals c1. Now it is easy to
get conditions of a fortiori intolerable rules:

eff(R) <
c1

rep(R)r
+

zα

√
(r − 1)c1√

prep(R)r
(4)

All other restrictions will lead to even lesser effec-
tiveness value of the rule. The last condition allows
to reduce the time of rule generation process signifi-
cantly, by exclusion of large number of rules without
loss of tolerable ones. So now with the aid of formulas
(3),(4) restriction process goes as shown on Figure 2.

2.2 Generation of disjunctive rules.

Consider the general case of rules of form (1). Dur-
ing the disjunctive restriction (i.e. conjunction merg-
ing) representativeness becomes higher while effective-
ness stays between corresponding characteristics of
rules being restricted. Consequently disjunctive re-
striction of arbitrary rules may easily lead to tolerable
dependency. Therefore there is a need for some limi-
tation of the class of rules for disjunctive restriction.
In this section the order of the rule is understood
as number of conjunctions included in rule’s sumption.
The proposed algorithm searches as before over rules
orders.

1. Take the rules with one conjunction in their sump-
tions which are enough representative and effec-
tive (i.e. their rep(R) > c1, eff(R) >= c2(1)),
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Figure 2. Restriction procedure. Each rule
can be represented as a point in effectiveness-
representativeness space.

but don’t have opportunities to become tolerable
during previous restriction (see Figure 2)

2. The rules being restricted to rules of second order
must have some interconnections in their sump-
tions:

(a) For rules with only one fuzzy set in their
sumptions the used feature must coincide

(b) For all others at least one fuzzy set in one
feature must coincide

3. The rules restriction goes in similar manner as in
2.1. Sumption of any rule being restricted should
be a subset (in a sense of conjunctions sets) of any
other two rules, which are being restricted to the
same rule of higher order.

4. If no rules remained then stop. Otherwise examine
the effectiveness of residuary rules. If eff(R) > c2

then the rule is tolerable and should be moved to
the list of final rules. Go to step 3.

3 Defining fuzzy sets.

As it was mentioned above assigning the shapes and
locations of fuzzy sets for expert may be quite a diffi-
cult problem. At the same time, expert can relatively
easy indicate the approximate borders of fuzzy sets [5].
According to this fact, suppose the idea of parametrical
family of fuzzy set’s shapes establishing. In [4] using
only isosceles triangle and trapezium as forms of fuzzy



sets leads to parametrical family with only 2n param-
eters to be optimized preserving the great variety of
possible shapes .

4 Results and conclusions

The concepts described above were implemented in
the program ExSys, which can be used both for pattern
recognition and forecasting tasks depending on selected
defuzzification method. In recognition case its results
were compared with q-nearest neighbors (QNN), sup-
port vector machines (SVM), committee of linear clas-
sificators (LM), test algorithm (TA), linear Fisher dis-
criminant (LDF) and multiple layer perceptron (MLP).
The comparison was help according to three applica-
tions. The first was melanoma diagnostics (3 classes,
33 features, 48 objects in the training sample), second
was speech phoneme recognition (2 classes, 5 features,
2200 objects in the training sample) and the last was
drug intoxication diagnostics (2 classes, 18 features,
450 objects in the training sample). The results of ex-
periments (percent of correctly recognized objects from
the independent test sample) are shown on Figure 3.

Figure 3. The performance of different recog-
nition algorithms on three real-life tasks.

In area of forecasting ExSys was compared with mul-
tiple linear regression and MatLab. There was consid-
ered the following task: predictions of magnetic am-
plitude oscillations in accelerating cavity of a klystron.
The necessary data was taken from Hamburg linear ac-
celerator in DESY. The source information was oscilla-
tions on other cavities within the same klystron. The
same table was used for learning of both systems. The
results of their work on the control sample are shown
on Figure 4.

The tests show that the methods, described above
can be successfully used for fuzzy expert systems devel-
opment. The proposed algorithm for knowledge base

Figure 4. Oscillations of magnetic field ampli-
tude.

generation provides not a great number of rules which
are both statistically significant and easily interpreted
by experts. The approach focuses on the essence of
research problem, not on particular samples, thus pre-
venting the whole system from catastrophic overtrain-
ing.
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