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Abstract. In the paper we propose a method based on Bayesian frame-
work for selecting the best kernel function for a particular problem. The
parameters of the kernel function are considered as model parameters and
maximum evidence principle is applied for model selection. We describe
a general scheme of Bayesian regularization, present model of kernel clas-
sifiers as well as our approximations for evidence estimation, and then
give some results of experimental evaluation.

1 Introduction

Support Vector Machines [1] are one of the most popular algorithms for solving
regression and classification problems. They have proved their good performance
on numerous tasks. The main reasons for the success of SVM are the following.
Vapnik’s idea of optimal hyperplane construction led to maximal margin prin-
ciple [2] which provides better generalization ability. Another useful property of
SVM is the so-called ”kernel trick” which allows linear methods of machine learn-
ing to build non-linear surfaces. However, there are some aspects which remain
unclear when one starts using SVM. The concrete form of the kernel function
should be defined by the user so as regularization coefficient C. As there are sev-
eral parametric families of kernel functions it is not clear what family and what
function from that family will lead to the best performance of SVM. Coefficient
C limits the values of weights for the support vectors, thereby giving the algo-
rithm different degrees of flexibility. Usually the parameters of kernel function
and coefficient C are defined using a cross-validation procedure. This may be
too expensive from computational point of view. Moreover the cross-validation
estimates of performance, although unbiased [2], have large variance due to the
limited size of the sample. Recently Tipping proposed an SVM-like algorithm,
which used Bayesian regularization for best weights selection [4]. It was called
Relevance Vector Machines (RVM). In this algorithm the weights of the so-called
relevance vectors are interpreted as random values with gaussian prior distribu-
tion centered in zero. In this approach there is no need to set a regularization
coefficient C to restrict the values of the weights. Large weights are penalized



automatically during training. In the paper we propose an extension of this idea
- Generalized Relevance Vector Machines (GRVM) which allows furthermore se-
lecting the best kernel function from the given family for the particular problem.
In the next section we give general scheme of Bayesian regularization of machine
learning algorithms. Section 3 briefly describes the RVM concept and in section 4
we present the GRVM algorithm for classification tasks. Some numerical aspects
of its realization are given in section 5. The last section contains experimental
evaluation and discussion.

2 Bayesian Learning and Maximal Evidence Principle

The paradigm of Bayesian learning allows for choosing the most appropriate
model for the given training data. The term model in this context means a
set of classifiers with fixed number of parameters and their prior distributions.
Suppose that we have a set of models (either finite, countable or continuum)
W (α), α ∈ A. Here α defines the family of classifiers, the structure of their
parameters w, and their prior distributions P (w|α). Denote by P (Dtrain|w)
the likelihood of the training data description with given values of w. As the
hyperparameters α do not have direct influence on the training data we may
write

P (Dtrain|w,α) = P (Dtrain|w) (1)

This means that α affects the likelihood of the training data description only
by means of its influence on w. A classical way of classifier training is based on
maximal likelihood principle, that is finding

wML = arg max
w

P (Dtrain|w)

The probability of new data Dtest given the training set is then just

P (Dtest|Dtrain) = P (Dtest|wML)

An alternative way of classifier training is to use Bayesian estimation of the
posterior probability of w

P (w|Dtrain) =
P (Dtrain|w)P (w)∫

W

P (Dtrain|w)P (w)dw

Then
P (Dtest|Dtrain) =

∫

W

P (Dtest|w)P (w|Dtrain)dw

Such inference can be done within one model. Now suppose we have several (or
even continuum) models W (α) of different nature, complexity etc. The ques-
tion is what model is preferable. To answer it we should estimate the so-called
evidence

P (Dtrain|α) =
∫

W (α)

P (Dtrain|w)P (w|α)dw (2)



The known principle of maximal evidence [3] states that we should choose that
model which has the greatest value of evidence or, in other words, where the rate
of ”good” classifiers is the highest. This principle is a compromise between the
complexity of a model and classifier’s performance on the training sample. Taking
into account (1) the likelihood of the test data is calculated in the following way:

P (Dtest|Dtrain) =
∫

A

∫

W (α)

P (Dtest|w, α)P (w,α|Dtrain)dwdα = (3)

∫

A

∫

W (α)

P (Dtest|w)P (w|α, Dtrain)P (α|Dtrain)dwdα,

where
P (α|Dtrain) ∝ P (Dtrain|α)P (α),

i.e. in case of absence of any prior assumptions on α, P (α|Dtrain) is proportional
to evidence. Integration over A is often intractable that is why P (α|Dtrain) is
usually approximated by δ(αMP ) where αMP = arg max

α
P (Dtrain|α). Then

equation (3) turns into

P (Dtest|Dtrain) ≈
∫

W (αMP )

P (Dtest|w)P (w|αMP , Dtrain)dw (4)

3 Relevance Vector Machines

Here we briefly consider the idea proposed by Tipping on using Bayesian frame-
work in kernel methods [4]. Henceforth we consider the classification problem.
Let Dtrain = {x, t} = {xi, ti}m

i=1 be training sample where xi are feature vec-
tors in an n-dimensional real space and ti are class labels taking values in
{−1, 1}. Consider the family of classifiers y(x) = sign(

∑m
i=1 wiK(x, xi) + w0) =

sign(h(x, w)). Establish prior distribution on the weights P (wi|αi) ∼ N(0, α−1
i ).

The set of parameters α determines the model in which the posterior distribution
is looked for. Define the likelihood of training sample as

P (Dtrain|w,α) = P (Dtrain|w) =
m∏

i=1

1
1 + exp(−tih(xi,w))

Then the evidence of model is given by (2). Our goal is to find α which maximizes
evidence and then to get posterior distribution P (w|Dtrain, α). As direct calcula-
tion of (2) is impossible due to the intractable integral, Tipping used Laplace ap-
proximation for its estimation. He approximated Lα(w) = log(P (Dtrain|w)P (w|α))
by quadratic function using its Taylor decomposition with respect to w at the
point of maximum wMP . Such approximation can be integrated yielding

P (Dtrain|α) ≈ exp(Lα(wMP )) | Σ |1/2, (5)



where Σ = (∇w∇wL(w) |w=wMP
)−1. Differentiating the last expression with

respect to α and setting the derivatives to zero gives the following iterative
re-estimation equation

αnew
i =

1− αold
i Σii

wMP
i

(6)

The training procedure consists of three iterative steps. First we search for the
maximum point wMP of L(w). Then we make approximation according to (5)
and use (6) to get the new values of α. The steps are repeated until the process
converges.

After the training is finished the integral (4) can be approximated by setting
P (w|Dtrain, α) ≈ δ(wMP ) resulting in the expression

P (Dtest|Dtrain) = P (Dtest|wMP )

It was shown [4] that RVM provides approximately the same quality as SVM
with the same kernel function and best value of C selected by cross-validation
but does not require the regularization coefficient C to be set by the user. More-
over it appeared that RVM is much more sparse, i.e. the rate of non-zero weights
(relevance vectors) is significantly less than the rate of support vectors. This hap-
pens because most of the objects are treated as irrelevant and the corresponding
α tend to infinity.

4 Generalized Relevance Vector Machines

Model selection via maximal evidence principle allows for avoiding the direct
setting of weight constraints in RVM. Nevertheless, making a choice on a kernel
function is still needed. The question is whether it is possible to use analogous
approach and to treat the kernel function type as meta-parameter using Bayesian
framework to define it. Henceforth we consider one of the most popular para-
metric kernels K(x, z) = exp(− ||x−z||2

2σ2 ). Our goal is to find the best σ value
without cross-validation using maximal evidence principle.

It is easy to see that equation (5) presents a compromise between the accuracy
on the training sample (the first item) and some kind of stability with respect
to changes of the algorithm’s weights (second item). Small values of σ lead to
overfitting and hence to high accuracy on the training sample. On the other
hand second item of formula (5) does not penalize such σ due to the following
reason. Small σ means that almost all objects from the training set have non-zero
weights and the influence from the neighboring objects can be neglected. But
changes in object’s weight just change the height of the corresponding gaussian
still keeping its center in the object. The likelihood after such weight changes is
still very high and the second term in (5) even encourages small σ. At the same
time if we start changing the position of the gaussian center the likelihood of the
training object changes dramatically (see fig.1). So small σ make classification
unstable with respect to shifts of the kernel centers. Hence it is necessary to
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Fig. 1. The likelihood of the training sample is a product of likelihoods in each train-
ing object x1, x2, x3. Narrow Gaussians centered in training objects have nearly no
influence on the other objects from the training set. Small weight change still keeps the
likelihood of the corresponding object high enough (dotted line) while small shifts of a
relevant point (gaussian center) make likelihood catastorphically low in case of small
σ (dashed line).

extend RVM model allowing kernels to be located at arbitrary point (relevant
point) of objects space.

Let M(α, σ) be the model that defines the family of classifiers y(x) =
sign(

∑p
i=1 wiK(x, zi) + b) = sign(h(x,w, z)). Here zi is the center of ith ker-

nel function (in our case this function is a gaussian). We call it a relevant point.
Then the likelihood of the training sample is given by

P (Dtrain|w,z) =
m∏

j=1

1
(1 + exp(−tjh(xj ,w, z)))

We have no prior knowledge about z so that we assume improper uniform dis-
tribution across the whole space of objects. Then the evidence is expressed by

P (Dtrain|α, σ) ∝
∫

W

∫

Rn

P (Dtrain|w,z)P (w|α)dwdz (7)

Again we will use Laplace approximation for the expression under the integral.
Denote Lα,σ(w,z) = log(P (Dtrain|w,z)P (w|α)). Then the integral (7) can be
evaluated analytically yielding

P (Dtrain|α, σ) ≈ exp(Lα,σ(wMP , zMP ))det(∇w,z∇w,zLα,σ(w,z) |w=wMP
z=zMP

)−1/2

Since σ is a scalar we may use direct search methods for its estimation by
evaluating

E(σ) = max
α

P (Dtrain|α, σ) (8)

Then the training process can be presented in the following way:



1. Start with some initial values of w, z, α, σ.
2. Maximize P (Dtrain|w, z)P (w|α) with respect to w.
3. Re-estimate α according to formula (6).
4. Go to step 2 until the process converges. Otherwise go to step 5.
5. Maximize P (Dtrain|w, z) with respect to z.
6. Go to step 2 until process converges. Otherwise get E(σ) according to (8).
7. Change σ in order to maximize E(σ).

Note that there is no need to make additional optimization with respect to
α in step 6 as it has been already optimized during steps 2-5. We may use z = x
as initial estimation. As the most of α will tend to infinity to the step 5, the
number of relevant points to be optimized will be relatively small and we may
utilize a gradient descent method.

5 Numerical realization and approximations

To implement the algorithm described in the previous section we have to deal
with problems connected with high dimensionality of the (w, z) space. Its di-
mension is p(n + 1) + 1. Large number of relevance points (large value of p) is
typical in case of small σ. We have to make some assumptions to reduce the
computation time. First of all we will set all mixed derivatives ∂2Lα,σ(w,z)

∂wi∂xjk
to

zero. Then the Taylor decomposition of Lα,σ(w, z) at the point of maximum
(wMP , zMP ) will turn to

Lα,σ(w,z) ≈ Lα,σ(wMP , zMP ) +
1
2
(4wT Hw4w +4zT Hz4z)

Here Hessian Hw is responsible for the selection of α i.e. for stability with respect
to weight changes and Hessian Hz is responsible for the selection of σ i.e. for
stability with respect to shifts of relevant points.

Hessian Hz is still difficult to compute as its size is pn × pn. So another
approximation is to interpret each relevance point zk as a single variable. Our
goal is to estimate the measure of unsteadiness at the point, not its direction.
Differentiating formally with respect to zk as a single variable we get

∂

∂zk
Lα,σ(w, z) =

∂

∂zk

p∑

i=1

log(1 + exp(−tih(xi,w, z))) =

−
p∑

i=1

tiwk

1 + exp(tih(xi, w,z))
∂h(xi, w, z)

∂zk

∂2

∂zk
2 Lα,σ(w, z) =

p∑

i=1

[
− exp(tih(xi, w, z))

(1 + exp(tih(xi, w,z)))2

(
∂h(xi, w,z)

∂zk

)2

+

ti
1 + exp(tih(xi,w, z))

∂2h(xi, w,z)
∂zk

2

]



where

∂h(xi, w,z)
∂zk

= wk
||zk − xi||

σ2
K(zk, xi);

∂2h(xi, w,z)
∂zk

2 = wk

( ||zk − xi||2
σ4

− 1
σ2

)
K(zk, xi)

In this Hessian the off-diagonal elements are several orders smaller than the
diagonal elements, so we may neglect them getting a diagonal Hessian

Ĥz = diag(
∂2Lα,σ(w,z)

∂z2
1

, . . . ,
∂2Lα,σ(w, z)

∂z2
p

)

6 Experimental evaluation and discussion

To illustrate the performance of GRVM we made several experiments using
datasets taken from the UCI repository [5]. We have split randomly each data
table into training (67% of objects) and test sets. Leave-one-out procedure was
used to select the best value of the kernel parameter in RVM and SVM and best
regularization coefficient C in SVM. Then these classifiers were tested on the test
set. Next we selected the kernel parameter using GRVM via maximum evidence
principle and used RVM with this new value of σ . The results are shown in
table 1. A typical relation between test error and log-evidence is shown in Fig.
2.
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Fig. 2. Maximum of evidence most often corresponds to the minimum of test error.

It can be seen that maximum of evidence generally better corresponds to the
minimum of test error than leave-one-out error. The RVM with kernel parameters



selected according to maximal evidence tends to be more sparse. Maximization of
evidence can improve the performance in many cases for both RVMs and SVMs.
Moreover it allows us to carry out more sophisticated optimization, e.g. setting
different σi for different features. Creation of effective procedure of evidence
gradient estimation is still open question but seems to be a solvable task.

Table 1. Testing results of kernel function selection procedure. Column N contains
number of objects in learning sample, other columns contains error rate and number
of support[relevant] vectors for RVM and SVM with Leave-One-Out and Maximal
Evidence kernel parameter selection procedure (RVM LOO, SVM LOO and RVM ME
correspondingly).

Errors Vectors
Data set N RVM LOO SVM LOO RVM ME RVM LOO SVM LOO RVM ME

AUSTRALIAN 482 14.9% 11.54% 10.58% 37 188 19

BUPA 241 25% 26.92% 21.15% 6 179 7

CREDIT 482 16.35% 15.38% 15.87% 57 217 36

HEPATITIS 108 36.17% 31.91% 31.91% 34 102 11

PIMA 537 22.08% 21.65% 21.21% 29 309 13
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