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Abstract

In the paper we propose a sparse logistic re-
gression method, in which the sparsity arises
from the use of a Laplace prior, but where
the usual regularization parameters are in-
tegrated out analytically. Such approach
leads to the discontinuous criterion function.
Two variants of training procedure which
deals with discontinuities are presented. In
the first approach we use coordinate descent
method while in the second one we fuzzify the
criterion by making it smooth and then use
standard second-order optimization. Both
methods lead to sparse decision rules which
are comparable with the state-of-art SVM
and RVM classifiers.

1. Introduction

In this paper, we present two methods for training
Bayesian sparse logistic regression with Laplace prior
been integrated out originally proposed in (Authors,
1900a) as a substantial improvement to the sparse lo-
gistic regression (SLogReg) approach of (Shevade &
Keerthi, 2003). The SLogReg algorithm employs an
L1-norm regularisation term (Tikhonov & Arsenin,
1977), corresponding to a Laplace prior over the model
parameters (Williams, 1995), in order to identify a
sparse sub-set of the most discriminatory features.
Both the generalization ability of the classifier and the
level of sparsity achieved are critically dependent on
the value of a regularization parameter, which must be
carefully tuned to optimize performance. This is nor-
mally achieved by a computationally intensive search
for the minimizer of a cross-validation based estimate
of generalization performance. Instead, a Bayesian ap-
proach could be adopted, in which the regularization
parameter is integrated out analytically, using an un-
informative Jeffery’s prior, in the style of (Buntine &
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Weigend, 1991) (see also (Lehrach et al., 2006)). The
resulting parameterless classification algorithm (BLo-
gReg) is much easier to use and is comparable in per-
formance with the original sparse logistic regression
algorithms, but is two or three orders of magnitude
faster, as there is no longer a need for a model selec-
tion stage to optimize the regularization parameter.
We propose two possible ways of training the classifier.
In the first case we minimize exact Bayesian criterion
using coordinate descent method. In the second case
we approximate criterion function with its continuous
analogue and then use second-order optimization. It
tends to be faster while showing approximately the
same accuracy. However, in the problems with large
amount of features it becomes dependant on the choice
of starting point and the exact procedure is preferable.

The existing sparse logistic regression optimization
problem is reviewed in Section 2. The modified
Bayesian logistic regression is then introduced in Sec-
tion 3. Section 4 presents two training procedures
for Bayesian criterion function resulting in BLogReg
and FuzzyBLogReg algorithms. Experimental results
obtained on the well-studied problems from the UCI
repository are presented in Section 5, demonstrating
the competitiveness of the algorithm. Finally, the
work is summarized and conclusions drawn in Sec-
tion 6.

2. Sparse Logistic Regression

We are commonly faced with statistical pattern recog-
nition problems, where we must learn some decision
rule distinguishing between objects belonging to one
of two classes, based on a set of n training examples,
D = (T ,X ) = {( ti, ~xi)}n

i=1, ~xi ∈ Rd, ti ∈ {−1, +1}.
Logistic regression is a classical approach to this prob-
lem, that attempts to estimate the a-posteriori proba-
bility of class membership based on a linear combina-
tion of the input features,

p(1|~x) =
1

1 + exp{−y(~x)}
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where

y(~xi) =
d∑

j=1

wjxij + w0.

The parameters of the logistic regression model, ~w =
(w0, w1, . . . , wd), can be found by maximizing the like-
lihood of the training examples, or equivalently by
minimizing the negative log-likelihood. Assuming D
represents an independent and identically distributed
(i.i.d.) sample from a Bernoulli distribution, the neg-
ative log-likelihood is given by

L(T |X , ~w) =
n∑

i=1

log {1 + exp (−tiy(~xi)} .

The resulting model is however fully dense, in the sense
that none of the model parameters ~w are in general ex-
actly zero. Ideally we would prefer a model based on a
small selection of the most informative features, with
the remaining features being “pruned” from the model.
A sparse model can be introduced by adding a regular-
ization term to the negative log-likelihood (Williams,
1995), corresponding to a Laplace prior over ~w, to give
a modified training criterion,

F = L(T |X , ~w) + λR(~w) where R(~w) =
d∑

i=1

|wi|

(1)
and λ is a regularization parameter, controlling the
bias-variance trade-off and simultaneously the sparsity
of the resulting model. Note that the usual bias pa-
rameter w0 is normally left unregularized. At a min-
ima of F , the partial derivatives of F with respect to
the model parameters will be uniformly zero, giving

∣∣∣∣
∂L(T |X , ~w)

∂wi

∣∣∣∣ = λ if |wi| > 0
∣∣∣∣
∂L(T |X , ~w)

∂wi

∣∣∣∣ < λ if |wi| = 0.

This implies that if the sensitivity of the negative log-
likelihood with respect to a model parameter, wi, falls
below λ, then the value of that parameter will be set
exactly to zero and the corresponding input feature
can be pruned from the model. The principal short-
comings of this approach lie in the training algorithm
no longer involving an optimization problem with con-
tinuous derivatives and in the need for lengthy cross-
validation trials to determine a good value for the reg-
ularization parameter λ. Below we suggest a possible
solution for these two problems based on integrating
out regularization parameter λ and approximation of
criterion with a smooth function.

3. Bayesian Regularization

In this section, we demonstrate how the regularization
parameter may be eliminated, following the methods
of (Buntine & Weigend, 1991) and (Williams, 1995)
and then briefly describe the relationship of this ap-
proach with alternative Bayesian methods based on
evidence framework.

3.1. Eliminating the Regularization Parameter
λ

Minimization of (1) has a straight-forward Bayesian
interpretation; the posterior distribution for the model
parameters ~w can be written as

p(~w|D, λ) ∝ p(D|~w)p(~w|λ).

F is then, up to an additive constant, the negative log-
arithm of the posterior density. The prior over model
parameters, ~w, is then given by a separable Laplace
distribution

p(~w|λ) =
(

λ

2

)N

exp{−λR(~w)} =
N∏

i=1

λ

2
exp {−λ|wi|} ,

(2)
where N is the number of active (non-zero) model pa-
rameters. A good value for the regularization parame-
ter λ can be estimated, within a Bayesian framework,
by maximizing the evidence (MacKay, 1992a; MacKay,
1992c; MacKay, 1992b) or alternatively it may be in-
tegrated out analytically (Buntine & Weigend, 1991;
Williams, 1995). Here we take the latter approach,
where the prior distribution over model parameters is
given by marginalizing over λ,

p(~w) =
∫

p(~w|λ)p(λ)dλ.

As λ is a scale parameter, an appropriate ignorance
prior is given by the improper Jeffrey’s prior, p(λ) ∝
1/λ, corresponding to a uniform prior over log λ. Sub-
stituting equation (2) and noting that λ is strictly pos-
itive,

p(~w) =
1

2N

∫ ∞

0

λN−1 exp{−λR(~w)}dλ.

Using the Gamma integral,
∫∞
0

xν−1e−µxdx = Γ(ν)
µν ,

we obtain

p(~w) =
1

2N

Γ(N)
R(~w)N

=⇒ − log p(~w) ∝ N log R(~w),

giving a revised optimization criterion for sparse logis-
tic regression with Bayesian regularization1,

Q = L(T |X , ~w) + N log R(~w), (3)

1N log R(~w) is assumed to be zero when N = 0.
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in which the regularization parameter has been elimi-
nated, for further details and theoretical justification,
see (Williams, 1995). Similar approach for integrating
out scale parameters of Gaussian distribution based
on the use of Jeffrey’s prior and exponential prior has
been proposed by (Figueiredo, 2003), along with an
Expectation-Maximization (EM) style training algo-
rithm.

3.2. Relationship with the Evidence
Framework

It has been observed that the “integrate-out” ap-
proach to dealing with the regularization parameter
(Buntine & Weigend, 1991) is likely to lead to over-
regularized models that under-fit the data, for neural
network models with a traditional Gaussian weight-
decay prior, and that evidence framework (MacKay,
1992a; MacKay, 1992c; MacKay, 1992b) is generally
to be preferred (MacKay, 1994). However, it is rela-
tively straight-forward to show that, in the case of the
Laplace prior, the iterative update formula for the ef-
fective regularization parameter (4) is identical to the
update formula for the regularization parameter under
the evidence framework (Williams, 1995).

4. Minimizing the Bayesian Training
Criterion

4.1. An Exact Optimization Procedure

For deriving optimization procedure for Bayesian
training criterion (3) we first consider the case with
predefined regularization coefficient (1). An efficient
training algorithm proposed by (Shevade & Keerthi,
2003) seeks to minimize the cost function (1) by opti-
mizing one parameter at a time via Newton’s method.
However, due to the discontinuity in the first deriva-
tive at the origin, care must be taken when the value
of a model parameter passes through zero. This is
achieved by bracketing the optimal value for a model
parameter, wi, by upper and lower limits (H and L
respectively) such that the interval does not include
0, except perhaps at a boundary. These limits can be
computed using the gradient of F with respect to wi

computed at its current value and at zero, from both
above and below, as shown in Table 1.

A model parameter must be selected for optimization
at each iteration, the parameter with the gradient of
the greatest magnitude is a sensible choice. In order
to improve the speed of convergence, we begin by op-
timizing only active parameters (those with non-zero
values), and only consider inactive parameters if no ac-
tive parameter can be found with a non-zero gradient.

Table 1. Special cases that must be considered in optimiz-
ing F with respect to wi in order to avoid difficulties due
to the discontinuity in the first derivative at the origin.

Case wi
∂F
∂wi

˛̨
˛
wi

∂F
∂wi

˛̨
˛
0−

∂F
∂wi

˛̨
˛
0+

L H

1 0 — < 0 < 0 0 +∞
2 0 — > 0 > 0 −∞ 0
3 < 0 > 0 — — −∞ wi

4 > 0 < 0 — — wi +∞
5 < 0 < 0 > 0 — wi 0
6 > 0 > 0 — < 0 0 wi

7 < 0 < 0 — > 0 0 +∞
8 > 0 > 0 < 0 — −∞ 0
9 < 0 < 0 ≤ 0 ≥ 0 0 0
10 > 0 > 0 ≤ 0 ≥ 0 0 0

Iterative optimization procedures do not generally re-
duce the gradient exactly to zero, and so in practice
we only consider parameters ~w if they have a gradient
exceeding a pre-defined tolerance parameter τ . The
algorithm terminates when no such parameter can be
found. For a complete description of the training al-
gorithm, see (Shevade & Keerthi, 2003).

In that paper it is demonstrated that the cost function
for sparse logistic regression using a Laplace prior can
be iteratively minimized in an efficient manner one pa-
rameter at a time. Note that the objective function is
non-smooth, as the first derivatives exhibit disconti-
nuities at wi = 0, ∀i ∈ {1, 2, . . . , N}, but is otherwise
smooth. These properties of the objective function are
clearly evident from the first and second derivatives,

∂

∂wi
log R(~w) =

wi

|wi|
1

R(~w)
∂2

∂w2
i

log R(~w) = − 1
R(~w)2

.

The training criterion incorporating a fully Bayesian
regularization term (3) can be minimized via a sim-
ple modification of the existing training algorithm for
sparse logistic regression. Differentiating the original
and modified training criteria (1,3), we have that

∇F = ∇L(T |X , ~w) + λ∇R(~w)

∇Q = ∇L(T |X , ~w) + λ̃∇R(~w)

where

1/λ̃ =
1
N

N∑

i=1

|wi|. (4)

From a gradient descent perspective, minimizing Q ef-
fectively becomes equivalent to minimizing F , assum-
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ing that the regularization parameter, λ, is continu-
ously updated according to (4) following every change
in the vector of model parameters, ~w (Williams, 1995).
This requires only a very minor modification of the
code implementing the sparse logistic regression algo-
rithm, whilst eliminating the only training parameter
and hence the need for a model selection procedure in
fitting the model.

4.2. Fast Approximate Optimization
Procedure

Due to the discontinuities of Bayesian criterion (3) we
cannot use advanced optimization strategies such as
Newton method directly. However, it is possible to
replace discontinuous function N log R(~w) by its con-
tinuous approximation. Recall that N is a number of
non-zero weights, so each time we set a weight to zero
we should reduce N by one.

Now consider the following smooth estimate of N

N̂ = n−
n∑

i=1

exp
(
− w2

i

2σ2

)
,

where σ > 0 is some positive fuzzification coefficient.
It is easy to see that N̂ equals zero if all the weights
are zeros and equals N if there are N relatively large
weights while all the others are zeros.

It can be shown that minimum of Bayesian criterion
(3) lies within the same hyperoctant HML where max-
imum likelihood point ~wML is located. Hence we
may use constrained Newton optimization for search-
ing minimum of the criterion within the hyperoctant
HML. Note that the function N̂ log R(~w) is smooth
function in HML except the point ~w = 0. Consider
now a domain

M = {~w ∈ HML, |wi| ≥ ε > 0,∀i = 1, . . . , n}.
Function N̂ log R(~w) is smooth in M. So we may use
Newton method for optimizing approximate Bayesian
criterion

Q̂ = L(T |X , ~w) + N̂ log R(~w). (5)

If the constraint becomes active, i.e. wi = ε, then
such weight is set to zero. This condition establishes
the relation between σ and ε

lim
ε→+0

(
C0 − exp

(
− ε2

2σ2

))
log(C1 + ε) = C0 log C1,

(6)
∀C0 > 0, C1 > 0.

Figure 1 shows the behaviour with respect to single
weight change of exact criterion

C0 log(C1 + |wi|)

and its approximate estimate
(

C0 − exp
(
− w2

i

2σ2

))
log(C1 + |wi|)

with C0 = 2, C1 = 0.03, σ = 0.3. Note that approxi-
mate regularizer is continuous for all values of wi and
is smooth for wi > 0 (so as for wi < 0).

-3 -2 -1 0 1 2 3
-8

-6

-4

-2

0

2

4

Approximate regularizer

Exact regularizer

Figure 1. Behaviour of exact and approximate regularizers
with respect to single weight change. Exact regularizer has
a removable jump at point 0.

In case all weights are zeros regularizer N̂ log R(~w) is
supposed to be zero. To guarantee this for our approx-
imation we should require the limit (6) to converge to
zero when C0 = 1 and C1 = 0. This yields

lim
ε→+0

(
1− exp

(
− ε2

2σ2

))
log ε = lim

ε→+0

ε2

2σ2
log ε = 0.

This is true when σ = εk with k < 1. Setting ε to
relatively small value and σ e.g. to

√
ε gives valid ap-

proximation of Bayesian criterion (3) with its smooth
analogue (5) throughout the whole HML. As an opti-
mization starting point ~wML can be taken.

5. Results

In this section, we evaluate the performance of two
training procedures (BLogReg and FuzzyBLogReg) of
the proposed logistic regression method, Relevance
Vector Machine (Tipping, 2001) with basis functions
φi(~x) = 〈~xi, ~x〉, which is known to be alternative vari-
ant of applying Bayesian learning principles to the
regularization of logistic regression, and the Support
Vector Machine (Guyon et al., 1992) with linear ker-
nel function and regularization coefficient C = 1.
For all four methods error rates were measured. Be-
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Table 2. Error rates together with standard deviations (in percents).

Data set BLogReg FuzzyBLogReg LinearSVM LinearRVM

Bupa liver disorders 33.28± 2.60 32.64± 3.33 31.59± 0.58 32.35± 0.73

German credit numeric 25.12± 0.97 24.60± 0.69 24.92± 1.11 24.76± 0.22

Heart 18.96± 0.66 18.81± 0.99 18.81± 0.99 20.07± 1.49

Australian 15.07± 0.91 15.19± 0.84 16.17± 0.65 15.57± 0.22

Pima-indians-diabetes 23.10± 0.96 23.10± 0.96 23.39± 0.80 23.67± 0.50

Thyroid-sick.test 4.28± 0.35 4.07± 0.30 3.97± 0.57 3.91± 0.38

Wisconsin Diagnostic Breast Cancer 2.99± 0.48 2.78± 0.15 3.30± 0.45 3.23± 0.72

Wisconsin Prognostic Breast Cancer 22.73± 1.13 27.98± 1.81 22.53± 1.81 22.63± 0.90

Rank 22.50 17.00 19.50 21.00

Color legend Place 1 Place 2 Place 3 Place 4

Table 3. Training time together with standard deviations (in seconds).

Data set BLogReg FuzzyBLogReg

Bupa liver disorders 0.67± 0.40 0.26± 0.11
German credit numeric 1.44± 0.16 0.33± 0.06
Heart 0.68± 0.05 0.34± 0.04
Australian 2.41± 0.31 0.57± 0.15
Pima-indians-diabetes 0.33± 0.05 0.14± 0.02
Thyroid-sick.test 4.14± 0.65 3.13± 1.55
Wisconsin Diagnostic Breast Cancer 3.31± 1.06 3.29± 0.79
Wisconsin Prognostic Breast Cancer 3.78± 0.81 0.51± 0.13

sides, we compare BLogReg and FuzzyBLogReg us-
ing their training time and obtained sparsity. Bench-
mark datasets were taken from UCI repository (New-
man et al., 1998). For each data set nominal features
were transformed into a set of binary ones, unknown
values were changed to mean values for each feature
and then each sample was normalized in a way that
each feature has zero mean and unit variance. 5x2-
fold cross validation strategy was used for estimating
error rates, training time and sparsity of classifiers for
each data set. This strategy is known to be one of
the most reliable ones for measuring classifiers charac-
teristics (Dietterich, 1998). Tables 2, 3 and 4 report
about experimental results. Rank was calculated in a
usual way: for each data set classifiers get points cor-
responding to their place (from 1 to 4); then points
are summed for all data sets.

These results allow to make the following conclusions.
All four algorithms show comparable performance in
terms of error rates. It means that BLogReg and
FuzzyBLogReg converge to similar points ~wMP . As a

result both algorithms show approximately the same
sparsity. However, FuzzyBLogReg is appeared to be
faster than BLogReg for all benchmark tasks. Mean-
while, it should be noted that in all benchmark tasks
number of objects was significantly greater than num-
ber of features (i.e. number of freedom degrees).

The next experiment demonstrates the case when
number of features is comparable with number of ob-
jects. Mushroom data set from UCI repository was
taken as benchmark problem. There are 111 features
in the data set after conversion to numeric features.
Since there are 8124 objects in the data set different
subsets of size 200 (Sample 1 to 5) were taken ran-
domly preserving class prior probabilities. Tables 5,
6 and 7 report about the results. As before all algo-
rithms show comparable performance in terms of er-
ror rates. However, fuzzy variant of BLogReg demon-
strates significantly lower sparsity comparing to exact
procedure BLogReg. This happens because Bayesian
criterion Q is no more unimodal function (as crite-
rion F was), nor its approximation Q̂. When there
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Table 4. Sparsity together with standard deviations

Data set #Features BLogReg FuzzyBLogReg

Bupa liver disorders 6 5.30± 0.27 5.10± 0.22
German credit numeric 24 18.50± 1.06 17.20± 0.45
Heart 20 11.10± 0.89 8.90± 0.89
Australian 38 19.60± 1.47 17.30± 1.48
Pima-indians-diabetes 8 6.90± 0.42 6.70± 0.27
Thyroid-sick.test 31 11.60± 0.42 11.30± 0.67
Wisconsin Diagnostic Breast Cancer 30 9.80± 0.27 10.30± 0.67
Wisconsin Prognostic Breast Cancer 33 7.00± 0.00 11.30± 5.14

Table 5. Error rates together with standard deviations (in percents).

Data set BLogReg FuzzyBLogReg LinearRVM LinearSVM

Agaricus-lepiota (mushroom) 1 1.48± 0.30 1.09± 0.14 2.62± 0.51 1.28± 0.21

Agaricus-lepiota (mushroom) 2 1.73± 0.00 1.09± 0.14 2.81± 0.62 0.99± 0.00

Agaricus-lepiota (mushroom) 3 1.53± 0.21 1.33± 0.37 3.46± 0.68 1.33± 0.37

Agaricus-lepiota (mushroom) 4 2.12± 0.62 1.33± 0.77 4.94± 2.93 1.68± 0.88

Agaricus-lepiota (mushroom) 5 1.88± 1.01 1.33± 1.11 4.59± 0.81 1.33± 1.11

Rank 15.00 7.00 20.00 8.00

Color legend Place 1 Place 2 Place 3 Place 4

are few features and many objects in the training
set both methods tend to converge to the same or
close points. But with the increase of number of fea-
tures, the number of local extrema increases and ap-
proximate method becomes dependant on the choice
of starting point. In particular starting optimization
from ~wML yields to accurate but non-sparse decision
rules. For the cases when sparsity is of extreme im-
portance BLogReg should be preferred.

6. Conclusions

In this paper we demonstrate that the regularization
parameter arising in the sparse logistic regression algo-
rithm (SLogReg) of (Shevade & Keerthi, 2003) can be
eliminated, via Bayesian marginalization. (Authors,
1900a) and (Authors, 1900b) clearly demonstrate that
the proposed algorithm for sparse logistic regression
with Bayesian regularization (BLogReg) is competi-
tive with the original SLogReg and RVM algorithms
in terms of performance and sparsity. However, as the
need for a cross-validation based model selection pro-
cess is obviated, the improved algorithm is two to three
orders of magnitude faster than its predecessor.

For optimization of new criterion Q two procedures

were proposed. The first one is based on (Shevade &
Keerthi, 2003) coordinate descend method while the
second one uses smooth approximation of criterion
function Q̂ with further Newton optimization algo-
rithm. All algorithms demonstrate comparable perfor-
mance (including Support Vector Machines and Rel-
evance Vector Machines with inner product as kernel
(basis) function). However, training speed of fuzzy
variant is higher comparing to exact procedure. Mean-
while, in tasks when number of features is compara-
ble with number of objects fuzzy variant shows signif-
icantly lower sparsity and in these situations for pro-
moting sparsity exact BLogReg should be preferred.
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