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Abstract

In the paper we propose a new type of
regularization procedure for training sparse
Bayesian methods for classification. Trans-
forming Hessian matrix of log-likelihood
function to diagonal form with further reg-
ularization of its eigenvectors allows to opti-
mize evidence explicitly as a product of one-
dimensional integrals. The process of auto-
matic regularization coefficients determina-
tion converges in one iteration. We show
how to use the proposed approach with Gaus-
sian and Laplacian priors. Both algorithms
show comparable performance with the state-
of-the-art Relevance Vector Machines (RVM)
but require less time for training and pro-
duce more sparse decision rules (in terms of
degrees of freedom).

1. Introduction

Bayesian methods have become very popular tech-
nique for classification during the last years (Bishop,
2006; Neal, 1996). Within this framework structural
parameters (sometimes called model parameters) are
considered to be the hyperparameters defining the
family of possible classifiers. Conceptually there are
two approaches to the determination of the hyperpa-
rameters. One approach is based on Automatic Rel-
evance Determination (ARD) originally proposed by
MacKay (MacKay, 1992) and leads to evidence (or
type-II likelihood) maximization. Probably the most
known algorithm which uses ARD is Relevance Vector
Machine (RVM) (Tipping, 2000), where each weight
has individual regularization coefficient that is ad-
justed iteratively during training. This algorithm is
an example of sparse Bayesian classifier with the most
of weights tend to zero. RVM may operate only with
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Gaussian priors over the weights. On the other hand
it is known that Laplace priors are sparsity-promoting
and may set a number of weights exactly to zero thus
discovering irrelevant objects or features (Williams,
1995). However, direct application of Laplacian prior
to RVM is impossible due to intractable integral which
arises in the expression for evidence.

Alternative strategy is to integrate out hyperparame-
ters obtaining parameter-free prior and then to max-
imize the product of this marginalized prior and like-
lihood function. It was first proposed by Williams
(Williams, 1995) exactly for working with Laplacian
priors and later was used successfully for processing
large number of features in biomedical data (Cawley
& Talbot, 2006) and for multi-class problems (Caw-
ley et al., 2007). Unfortunately within this framework
some useful properties of the problem may be lost.
For example in the case of linear models the imple-
mentation of such prior with hyperparameters being
integrated out results in the problem where criterion
function is multi-modal, often extremely so (Tipping,
2001).

In this paper we propose an approach which allows
to apply evidence framework for both types of pri-
ors. To achieve this we transform Hessian matrix of
log-likelihood function to diagonal form, establish in-
dividual priors over each of eigenvectors and use ARD
for estimating the values of the corresponding hyper-
parameters. In case of such priors the expression for
evidence can be decomposed to the product of inde-
pendent one-dimensional integrals each responsible for
one degree of freedom. This approach is quite com-
mon since it does not depend on the particular form
of prior and only requires that priors regularize each
eigenvector independently of others. Besides that it
seems more reasonable to assign individual regulariza-
tion coefficients to the degrees of freedom defined by
the eigenvectors of log-likelihood Hessian rather than
to the weights which may contribute both to relevant
and irrelevant eigenvectors.

Such transformation factorizes the evidence. It be-
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comes a product of one-dimensional integrals that can
be optimized individually. This fact provides conver-
gence of training process in one iteration. The number
of relevant eigenvectors (degrees of freedom) becomes
less than the number of zero-weights in RVM providing
decision rules with fewer number of parameters.

The rest of the paper is organized as follows. Sec-
tion 2 gives some notation, briefly describes evidence
framework and presents problems in attempting to use
Laplacian prior within the framework. In Section 3 we
describe our approach and illustrate its application for
the Gaussian and Laplacian priors. The comparative
evaluation of accuracy, training time and sparsity with
RVM is given in Section 4. Finally the work is sum-
marized and conclusions are drawn in Section 5.

2. Evidence Framework

2.1. General Formulation

Suppose we are given a set of training objects
{(~xi, ti)}n

i=1 = (X , T ) that are described by d-
dimensional real vector of features ~x ∈ Rd and class
label that may take one of two values t ∈ {−1, +1}.
The classifier is determined by the vector of weights
~w. Given the feature vector it returns posterior esti-
mate for each class P (−1|~x, ~w) and P (+1|~x, ~w). The
likelihood function of correct classification of training
set is given by

P (T |X , ~w) =
n∏

i=1

P (ti|~xi, ~w).

The set of possible classifiers is defined by prior
P (~w|~α). Finding the weights according to maximum
a posteriori rule ~wMP = arg max P (T |X , ~w)P (~w|~α) is
equivalent to the use of additive regularizer when opti-
mizing logarithm of posterior. Hence the hyperparam-
eters ~α can be regarded as regularization coefficients.

Bayesian inference assumes that decision is made by
weighted voting throughout the whole set of possible
classifiers within a model and, in case of multiple pos-
sible models, throughout the whole set of models as
well. Then the posterior for the classification of new
object ~x can be written as

P (t|~x, T ,X ) =∫

A

∫

W(~α)

P (t|~x, ~w, ~α)P (~w, ~α|T ,X )d~wd~α =
∫

A

∫

W(~α)

P (t|~x, ~w, ~α)P (~w|T ,X , ~α)P (~α|T ,X )d~wd~α.

(1)

MacKay has proposed to approximate P (~α|T ,X ) with
δ(~α−~αMP ) where ~αMP is maximum evidence estimate

~αMP = arg max E(~α),

where evidence is computed as likelihood of model

E(~α) = P (T |X , ~α) =∫

W(~α)

P (T |X , ~w, ~α)P (~w|T ,X , ~α)d~w. (2)

Then equation (1) can be approximated in the follow-
ing way

P (t|~x, T ,X ) ≈
∫

W(~αMP)

P (t|~x, ~w, ~αMP )P (~w|T ,X , ~αMP )d~w. (3)

2.2. Relevance Vector Machine

In 2000 Tipping applied evidence framework for au-
tomatically adjusting individual regularization coeffi-
cients in generalized linear models

y(~x, ~w) =
M∑

i=1

wiφi(~x).

The likelihood function is given by

P (t|~x, ~w, ~α) =
1

1 + exp(−ty(~x, ~w))
(4)

with normal priors on each weight wi ∼ N (0, α−1
i ).

For evidence estimation Tipping used Laplace approx-
imation of subintegral function in (2)1. Such formula-
tion allowed to apply ARD by iteratively adjusting ~α
and led to very sparse decision rules with the most of
weights set to zero.

In case of generalized linear models integration
(3) can be reasonably well approximated by tak-
ing only the most probable weights ~wMP =
arg max~w P (~w|T ,X , ~αMP ).

It should be noted, however, that the weights of irrel-
evant basis functions φi(~x) only tend to zero with αi

going to infinity. On the contrary the use of Laplacian
priors makes some weights equal exactly zero. But the
approximation of evidence becomes then intractable
problem since subintegral function is no longer smooth
and should be decomposed to 2M parts to be esti-
mated.

1Alternative methods were suggested in (Bishop & Tip-
ping, 2000).
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Algorithm 1 Gaussian REVM (GREVM)
input Training data (X , T ) = {~xi, ti}n

i=1, ~xi ∈
Rd, ti ∈ {−1, 1}, a set of basis functions {φi(~x)}M

i=1.
1: Find maximum of log-likelihood function ~wML =
arg max

~w
log P (T |X , ~w).

2: Take Hessian matrix at maximum point H =
∇~w∇~wP (T |~w,X )|~w=~wML

.
3: Make eigenvalues decomposition of Hessian H =
QT ΛQ, Λ = diag(λ1, . . . , λM ) and calculate ~uML =
Q~wML.
4:
for i = 1 to M do

if hiu
2
ML,i > 1 then

α∗i = hi/(hiu
2
ML,i − 1)

else
α∗i = +∞

end if
end for
5: Find maximum of regularized log-likelihood func-
tion ~wMP = arg max

~w
log P (T |X , ~w)P (Q~w|~α∗).

output Decision rule for classification of new ob-
ject ~x: f(~x) = sign

(∑M
i=1 wMP,iφi(~x)

)

3. Proposed approach

Without loss of generality hereinafter we suggest like-
lihood function (4) to be the product of sigmoids that
is used in RVM. Hence log-likelihood can be written
as

L(T |X , ~w, ~α) = −
n∑

i=1

log(1 + exp(−tiy(~xi, ~w))). (5)

The main idea of the proposed approach is to make
Laplace approximation of likelihood function, treat
eigenvectors of Hessian matrix of likelihood function
as new axes and make regularization as in usual
sparse Bayesian learning along these new axes2. After
Laplace approximation of likelihood function evidence
(2) can be written as:

E(~α) =
∫

W(α)

P (T |X , ~w, ~α)P (~w|~α)d~w ≈

P (T |X , ~wML, ~α)
∫

W(α)

exp
(

1
2
(~w − ~wML)T H(~w − ~wML)

)

P (~w|~α)d~w,

2Quite similar “diagonalizing trick” for constructing
Bayesian formulations of sparse kernel methods is given
in (Cawley & Talbot, 2005).

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Figure 1. Behaviour of one-dimensional integral
fi(hi, uML,i, αi) depending on hi and uML,i in case
of Gaussian prior.

where

~wML = arg max
~w

P (T |X , ~w, ~α),

H = ∇~w∇~wP (T |X , ~w, ~α)|~w=~wML
.

Representing Hessian as H = QT ΛQ, where Λ =
diag(λ1, . . . , λM ), {λi}M

i=1 - Hessian eigenvalues, we
come to new variables ~u = Q~w. Since log-likelihood
function (5) is concave, Hessian H is non-positively
defined and all eigenvalues {λi}M

i=1 are non-positive.
Denote hi = −λi ≥ 0. We propose to introduce inde-
pendent regularization with respect to new variables
~u. This means that prior function can be written as

P (~u|~α) =
M∏

i=1

P (ui|αi).

The main goal of such regularization is to present ev-
idence as a product of one-dimensional integrals

E(~α) = P (T |X , ~uML, ~α)
M∏

i=1

fi(hi, uML,i, αi) =

P (T |X , ~uML, ~α)
M∏

i=1

∫
exp

(
−hi

2
(ui − uML,i)2

)

P (ui|αi)dui, (6)

and then perform ARD procedure for setting hyper-
parameters ~α. We call this procedure Relevance Eigen
Vector Machine (REVM).

In the following we consider two cases of regulariza-
tion: with Gaussian and Laplace prior functions.
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Algorithm 2 Laplacian REVM (LREVM)
input Training data (X , T ) = {~xi, ti}n

i=1, ~xi ∈
Rd, ti ∈ {−1, 1}, a set of basis functions {φi(~x)}M

i=1.
1-3: The same as in Algorithm 1.
4:
for i = 1 to M do

Find maximum of (11) using one-dimensional op-
timization procedure:
α∗i = arg max

αi

fi(hi, uML,i, αi)

end for
5: Find maximum of regularized log-likelihood func-
tion using coordinate-descend method proposed by
(Shevade & Keerthi, 2003):
~wMP = arg max

~w
log P (T |~w,X )P (Q~w|~α∗).

output Decision rule for classification of new ob-
ject ~x: f(~x) = sign

(∑M
i=1 wMP,iφi(~x)

)

3.1. Gaussian prior

Gaussian prior is given by the following expression

P (ui|αi) =
√

αi

2π
exp

(
−αiui

2

2

)
. (7)

Consider one-dimensional integral fi(hi, uML,i, αi) in
expression (6) with prior (7). It can be computed an-
alytically yielding:

fi(hi, uML,i, αi) =√
hiαi

2π

∫
exp

(
−hi

2
(ui − uML,i)2 − αi

2
u2

i

)
dui =

C exp

(
h2

i u
2
ML,i

2(hi + αi)

) √
αi

hi + αi
(8)

Here C is some positive constant. Depending on hi

and uML,i integral (8) has unique maximum or grows
continuously as αi tends to infinity (see fig. 1). Setting
derivative of (8) with respect to αi to zero, we obtain
optimal value of αi:

α∗i =

{
hi

hiu2
ML,i−1

if hiu
2
ML,i > 1

+∞ otherwise
(9)

Analogous equations for training RVM using
coordinate-descend method are obtained in (Tip-
ping & Faul, 2003).

Algorithm 1 presents training procedure for sparse
Bayesian model using Gaussian prior. Note that in
contrast to RVM, where iterative process is needed
for training, in Gaussian REVM (GREVM) optimal ~α
values can be found in one step. Experimental results
(see section 4) show that GREVM is much faster and
produces more sparse solutions comparing to RVM.
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Figure 2. Behaviour of one-dimensional integral

fi(hi, uML,i, αi) exp

„
hiu2

ML,i

2

«
depending on hi and

uML,i in case of Laplace prior. Function fi is multiplied
by exponent just for normalizing reason (both curves have
the same limit).

3.2. Laplace prior

Laplace prior function can be written as

P (ui|αi) =
αi

4
exp

(
−αi|ui|

2

)
. (10)

Substituting (10) to (6) one-dimensional integral be-
comes

fi(hi, uML,i, αi) =√
hi

2π

αi

4

∫
exp

(
−hi

2
(ui − uML,i)2 − αi

2
|ui|

)
dui =

Cαi exp

(
−hiu

2
ML,i

2

)[
erfcx

(√
hi

2

(
αi

2hi
− uML,i

))
+

erfcx

(√
hi

2

(
αi

2hi
+ uML,i

))]
, (11)

where erfcx(x) = 2√
π

exp(x2)
∫ +∞

x
exp

(
− t2

2

)
dt - the

scaled complementary error function3 and C is some
positive constant. Representation (11) involving func-
tion erfcx(x) is useful due to numeric stability reasons.
Expression (11) is unimodal function with respect to
αi (see fig. 2) and optimal value can be found effi-
ciently using one-dimensional optimization methods.
Algorithm 2 presents the training procedure for the
case of Laplace prior. Similar to GREVM in Lapla-
cian REVM (LREVM) optimization of ~α values can

3which is implemented, e.g. in MATLAB
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Table 1. Error rates together with standard deviations (in percents).

Data set GREVM CV LREVM CV RVM CV

WBCD 3.55± 0.33 3.75± 0.28 3.72± 0.45

Bupa liver disorders 33.45± 2.20 34.38± 2.02 33.62± 3.73

Echocardiogram 8.33± 0.00 8.33± 0.00 8.33± 0.00

Heart 17.70± 1.21 16.22± 1.49 17.33± 1.32

Hepatitis 17.94± 1.06 18.45± 2.12 13.94± 0.35

Pima 23.49± 0.44 23.83± 0.69 23.75± 0.36

Votes 5.10± 0.57 5.43± 0.53 5.93± 0.64

WPBC 22.02± 2.07 22.42± 2.98 22.93± 1.27

Rank 12.00 19.00 17.00

Color Place 1 Place 2 Place 3

Table 2. Training time together with standard deviations (in seconds).

Data set GREVM CV LREVM CV RVM CV

WBCD 145.05± 19.66 412.18± 45.49 571.69± 83.50
Bupa 19.48± 0.80 88.06± 2.88 91.42± 20.51
Echocardiogram 2.76± 0.15 16.90± 0.29 3.97± 0.17
Heart 11.08± 0.22 58.67± 1.35 29.75± 3.79
Hepatitis 4.90± 0.22 27.83± 0.52 6.92± 0.26
Pima 160.19± 2.27 470.76± 7.36 796.36± 59.63
Votes 33.69± 1.94 161.62± 11.27 84.87± 4.04
WPBC 7.34± 0.43 40.19± 0.50 14.28± 0.66

be done in one step thus speeding up training proce-
dure. However, the last step of the algorithm LREVM
- optimization of regularized log-likelihood function -
becomes non-trivial as this function is non-smooth at
the points where at least one of the weights equals zero.
For solving this problem we use algorithm proposed in
(Shevade & Keerthi, 2003).

4. Experiments

In this section we compare RVM with GREVM and
LREVM measuring their error rates, training time and
obtained sparsity (for REVM methods sparsity means
number of non-zero values in ~uMP ) on a set of data
taken from UCI repository (Newman et al., 1998). For
each data set nominal features were transformed into
a set of binary ones, unknown values were changed
to mean values for each feature and then each sample
was normalized in a way that each feature had zero
mean and unit variance. In all classifiers being com-
pared number of basis functions M = n + 1, φi(~x) =
exp(−‖~x − ~xi‖/(2σ2)), i = 1, . . . , n and φn+1(~x) ≡ 1.

An optimal value of width σ was chosen from the set
{0.01, 0.1, 0.3, 0.6, 1, 2, 3, 5, 7, 10} using 5x2-fold cross
validation strategy (Dietterich, 1998). For each data
set error rates, training time and sparsity were mea-
sured using 5x2-fold cross validation strategy as well.
Tables 1, 2 and 3 report about experimental results.
Rank was calculated in a usual way: for each data set
the winner gets one point, the second winner - two
points and the loser - three points, and then points
are summed for all data sets.

These results allow to make the following conclusions.
All three algorithms show comparable performance in
terms of error rates. However, the sparsity of GREVM
and especially LREVM is significantly less than cor-
responding value in RVM. This fact indirectly indi-
cates that it is more reasonable to assign individual
regularization coefficients to the degrees of freedom ~u
defined by the eigenvectors of log-likelihood Hessian
rather than to the weights ~w which may contribute
both to relevant and irrelevant eigenvectors.

GREVM seems to be faster than RVM as optimization
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Table 3. Sparsity together with standard deviations

Data set #Obj./2 GREVM CV LREVM CV RVM CV

WBCD 349 4.90± 0.65 3.10± 0.55 14.40± 8.09
Bupa 172 4.80± 0.45 3.60± 0.55 23.10± 14.06
Echocardiogram 48 2.20± 0.45 1.30± 0.45 4.00± 0.00
Heart 135 8.30± 0.76 5.20± 0.76 12.10± 4.02
Hepatitis 77 5.50± 0.28 3.80± 0.27 10.20± 2.68
Pima 384 8.40± 0.96 7.10± 0.42 10.10± 3.27
Votes 435 8.60± 0.65 7.10± 0.55 14.60± 3.66
WPBC 99 6.80± 0.76 4.80± 0.76 20.80± 2.49

of regularization coefficients ~α in GREVM requires
only one step comparing to iterative process in RVM.
LREVM is faster than RVM for datasets with many
objects and a little amount of features and slower for
other datasets. LREVM benefits in training time as it
has one-step optimization of regularization coefficients
but requires additional sophisticated optimization for
getting ~uMP , where optimization speed depends on
number of features. However, the LREVM training
procedure can be probably improved by using Newton
methods under some constrains.

5. Conclusions

In the paper we presented a new approach to regu-
larization of classifiers’ training procedure. Our sug-
gestion is to regularize degrees of freedom (expressed
in terms of log-likelihood Hessian eigenvectors) rather
than the weights of classifier. In the weight space it
corresponds to the use of non-diagonal regularizer of
specific form. This regularizer is given by

P (~w|~α) =

√
|A|

√
2π

M
exp

(
−1

2
~wT QT AQ~w

)

for Gaussian prior and

P (~w|~α) =
|A|
4M

exp


−1

2

M∑

i=1

∣∣∣∣∣∣

M∑

j=1

qijwj

∣∣∣∣∣∣




for Laplacian prior. Here A = diag(α1, . . . , αM ) and
Q = {qij}M

i,j=1. We claim that the number of freedom
degrees is more natural measure of complexity. Besides
that such approach provides decomposition of evidence
to the product of one-dimensional integrals that can be
optimized independently. The latter means that evi-
dence framework can be used effectively for automatic
relevance determination with different types of pri-
ors. This was demonstrated on the example of Laplace
prior whose application to classical RVM leads to the
integral which is too complicated for direct estimation.

Another interesting property of such regularization is
the potential of using information criterions such as
AIC (Akaike, 1974) and BIC (Schwarz, 1978) for se-
lecting optimal set of basis functions, e.g. in case of
using RBFs for setting the value of σ. Instead of the
number of free parameters one may use the number of
freedom degrees computed as

k =
M∑

i=1

hi

hi + αi
.

Then the best set of basis functions can be found by
optimizing information criterions.

It seems very promising to continue the regularization
by considering main axes of regularized likelihood Hes-
sian taken at the point ~wMP and repeat it iteratively
until the process converges. The value of evidence is
expected to increase with each iteration. It can be
shown easily that the sparseness in terms of freedom
degrees can’t be less than it was on the previous iter-
ation. Such training presumably leads to even more
sparse decision rules preserving generalization ability.
This can be viewed as a search of optimal non-negative
regularization matrix with respect to the weights, i.e.
regularizer which provides maximum value of evidence.
We consider it as one of the directions for the future
work.
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