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Abstract

In this paper we propose an alternative interpreta-
tion of Bayesian learning based on maximal evidence
principle. We establish a notion of local evidence which
can be viewed as a compromise between accuracy of ob-
tained solution with respect to the training sample and
its stability with respect to weight changes. The modifi-
cation of traditional Bayesian approach allows selecting
best solution among different models. This methodology
was used successfully for choosing best kernel function
in relevance vector machines algorithm. Both classifi-
cation and regression cases are considered.

1 Introduction

Model selection problem is very important for prac-
tical implementation of machine learning algorithms.
Many popular models of algorithms require some pa-
rameters (we call them model or structural parame-
ters) to be set by user before training begins. Num-
ber of layers in multi-layer perceptron, number of clus-
ters in cluster analysis, regularization coefficient can
serve as examples of such parameters. One of the most
known tasks of such kind is how to establish kernel
function which is the best for particular problem. This
task becomes more and more important as popularity
of kernel methods increases every year. To cope with
this problem several methods for particular families of
algorithms were proposed [1], [2]. But the only gen-
eral approach is still computationally expensive cross-
validation whose estimates are known to have large
variance.

A very interesting approach to model selection
which became very popular recently is so-called
Bayesian learning [3]. Its main idea is the following:
choose the model with the highest rate of ”good” al-

gorithms (algorithms with large likelihood). This rate
is called evidence. Also it is assumed that final deci-
sion is made by weighted voting among all algorithms
in a model with weights proportional to posterior dis-
tribution of corresponding parameters. However this
task is very difficult as it requires integration in high
dimensional space. It can be shown that if an algo-
rithm is linear with respect to all its parameters (e.g.
SVM) then solution with the largest posterior proba-
bility can be taken as good approximation of weighted
voting. In other words we may replace voting with only
one solution which has the largest vote. This idea was
used successfully in Relevance Vector Machines (RVM)
[5] where regularization coefficients are adjusted auto-
matically during training. Unfortunately the same idea
cannot be used for more sophisticated tasks such as e.g.
determination of the best kernel function. In this pa-
per we propose a modification of Bayesian approach
to model selection suggesting another interpretation of
evidence notion.

The rest of the paper is organized as follows. In
the next section we give a brief description of maximal
evidence principle and introduce local evidence notion.
Section 3 describes how this technique can be applied
for kernel selection in RVM while section 4 gives some
experimental results. Conclusions are given in the last
section.

2 Model Selection Paradigm

2.1 Bayesian Approach

Let Ω(�α) be a set of algorithms (model) which is
defined by model parameter �α. Then model selection
task is to choose the value of �α whose corresponding
model is the best with respect to the training data
{X,T} = {�xi, ti}n

i=1, where �xi ∈ R
d and t ∈ R or

t ∈ {−1, 1} for regression and classification cases cor-
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respondingly. In other words the best model is deter-
mined as �α∗ = arg max

�α
P (�α|X,T ). Assuming that all

models are equally likely we may rewrite it in the fol-
lowing manner:

P (�α|X,T ) ∼ P (T |X, �α) =

=
∫

Ω(�α)

P (T |X, �w, �α)P (�w|�α)d�w (1)

Here P (T |X, �w, �α) is likelihood of training data accord-
ing to the algorithm �w from family �α, while P (�w|�α)
is prior distribution of algorithms within the model.
The value of this integral is called evidence of model
which corresponds to the given value �α. According to
known principle of maximal evidence we should select
the model parameter �αME which turns expression (1)
into maximum. Decision about test data {Xtest, Ttest}
is made by voting over all algorithms of the model:

P (Ttest|Xtest,X, T ) =

=
∫

Ω( �αME)

P (Ttest|Xtest, �w, �αME)P (�w| �αME ,X, T )d�w

(2)

where

P (�w|�α,X, T ) =
P (T |X, �w, �α)P (�w|�α)∫

Ω(�α)

P (T |X, �w, �α)P (�w|�α)d�w

It can be shown that if algorithms are linear with re-
spect to their parameters �w then subintergral function
Q�α(�w) = P (T |X, �w, �α)P (�w|�α) is unimodal and it can
be approximated by Gaussian function. In this case
one may replace equation (2) with a simpler one

P (Ttest|Xtest,X, T ) ≈ P (Ttest|Xtest, �wMP ( �αME), �αME)
(3)

where �wMP (�α) = arg max
�w

Q�α(�w). This approximation

is no more valid if an algorithm is not linear with re-
spect to its parameters. Indeed Q�α(�w) is then a multi-
modal function and can’t be approximated by Gaussian
and hence equation (2) can’t be approximated by (3).
Moreover it can be too difficult even to find maximum
of Q�α(�w).

2.2 Local Evidence

Now consider a bit closer evidence expression for lin-
ear models i.e. for the cases when we may approximate
Q�α(�w) by Gaussian function. Then evidence integral
(1) can be taken analytically yielding

P (T |X, �α) ≈ (2π)n/2Q�α( �wMP (�α))|Σ|−1/2 (4)

where Σ = − ∂2

∂ �w2 log Q�α(�w(�α))|�w= �wMP (�α). This equa-
tion can be viewed as a compromise between accuracy
on the training sample (the first multiplier is regular-
ized likelihood at the point of maximum) and stability
of performance with respect to changes of classifier pa-
rameters (the last multiplier is squared root of inverse
Hessian of log-likelihood function).

If function Q�α(�w) is multi-modal then approxima-
tion (4) is incorrect and hence equation (2) can’t be
replaced by (3). Moreover the most of known meth-
ods find only one algorithm from model rather than
posterior distribution of algorithms within the model.
Hence it is necessary to estimate the ”quality” of algo-
rithm obtained as a result of training rather than the
whole model. Following the interpretation of evidence
as combination of accuracy and stability, we may intro-
duce a local analogue of evidence. Let �w0 be a vector
of algorithm’s parameters received in training process.
Generally speaking it is not a local extremum point of
Q�α(�w). Consider the following value:

LE( �w0, �α) = Q�α( �w0)
n∏

i=1

Ai (5)

Here n is number of algorithm’s parameters and

Ai =

{ |ai|−1, bi ≤ 0
1
2

√
2π
bi

exp
(

a2
i

2bi

)(
1−erf

(
|ai|√
2bi

))
, bi > 0

(6)
where ai = ∂

∂wi
log Q�α(�w)|�w= �wMP (�α) and bi =

− ∂2

∂w2
i

log Q�α(�w)|�w= �wMP (�α) are first and negative sec-
ond derivatives of regularized likelihood at the point
of solution correspondingly. Geometrically (5) and (6)
means that we integrate over the tail of gaussian (or
exponent in case of positive curvature) approximation
of likelihood behavior in the vicinity of our solution
(see fig.1). Note that in case when w0 is the only max-
imum point and n = 1 equation (5) turns to (4). Such
generalization allows to estimate the ”quality” of sin-
gle solution which will be used for processing test data.
If we had calculated the ”quality” of model according
to equation (1) we should have used integration (2) for
making further predictions rather than single solution
obtained via training procedure.

3 Kernel Validity Index

Consider popular model of kernel methods y(�x) =∑m
i=1 wiK(�x, �zi) + w0. Here �x is a vector of d real

features. In case of classification task the output of
algorithm is t(�x) = sign[y(�x)]. This model includes
such known algorithms like e.g. SVM, RBF networks

0-7695-2521-0/06/$20.00 (c) 2006 IEEE



Figure 1. Local evidence notion. Grey curve
is subintegral function Q�α(�w) represented
along selected variable. Black curve is Gaus-
sian function obtained as approximation at
point of our solution. Grey figure corre-
sponds to value Ai.

with one hidden layer, etc. Formally these algorithms
are linear with their parameters �w. In relevance vector
machines [5] the methods of Bayesian learning were ap-
plied to find best �w. The weights are supposed to have
priors equal to normal distributions with zero mean
and α−1 variance P (wi|αi) = N(0, α−1

i ). Model pa-
rameters �α are adjusted during training by evidence
maximization. Likelihood function is calculated as
P (Dtrain|�w, �α) =

∏q
i=1

1
1+exp(−tiy( �xi))

for classification
task and P (Dtrain|�w, �α) = exp

(∑q
i=1

1
2λ2 (ti − y(�xi))2

)
for regression task.

One of the most popular kernel functions is
K( �x1, �x2) = exp(− 1

2σ2 ‖ �x1− �x2‖2). To select best value
of σ we should extend our model adding kernel centers
�zi. But subintegral function Q�α,σ(�w, �z) now becomes
multi-modal as dependence y(�x) from �z = (�z1, . . . , �zm)
is non-linear. Moreover optimization of kernel centers
location in m × d dimensional space is computation-
ally very difficult problem. Actually, these centers are
usually not optimized at all and are set in the objects
of the training sample �z0. In this case we may use lo-
cal evidence to estimate quality of algorithm obtained
by optimizing the weights wi of kernels located in the
training objects with given σ. The kernel validity index
is calculated as follows:

KV (σ) = Q �αME ,σ( �wMP (αME), �z)|Σ|−1/2
m∏

i=1


 d∏

j=1

Aij




γi

(7)
here Σ = − ∂2

∂ �w2 log Q�α,σ(�w(�α), �z)|�w= �wMP (�α), Aij is sta-
bility component with respect to the shift of jth coor-
dinate of ith object calculated according to (6). The
stability components with respect to �zi should be con-

sidered with their effective weights γi = 1−αiΣii calcu-
lated according to [5]. Indeed if kernel has zero weight
its stability with respect to the center shift should be
ignored as if there were no kernel at all. It is easy to
prove that γi = 0 if and only if wi = 0.

Function KV (σ) has a typical bell-shaped form.
The value of σ = arg max KV (σ) is recommended for
further use.
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Figure 2. Sinc data, 141 train objects, 281
test objects, noise level 0.1. RVR per-
formance with kernel function obtained by
cross-validation and kernel validity index are
shown by black and grey curves correspond-
ingly.

4 Experimental Results

We compare kernel selection performance of ker-
nel validity index vs. cross-validation using 9 classi-
fication problems from UCI repository and data gen-
erated from sinc function for regression (see fig.2).
For each classification task we randomly split 20
times the data into train (33%) and test (67%)
sets and use RVM with kernels of different width
(σ = 0.01, 0.1, 0.3, 1, 2, 3, 4, 5, 7, 10). Test errors cor-
responded to the kernels with maximum validity or
with best cross-validation estimate and averaged by 20
pairs of train/test tables together with their standard
deviations are shown in table 1. Columns RVM CV
and SVM CV show the averaged test error with kernel
selection according to 5-fold cross-validation for RVM
and SVM. RVM MV shows averaged test errors cor-
responded to maximum kernel validity index. Column
SVM MV shows how SVM performs with the same ker-
nels as in RVM MV. This column helps us to check
whether the optimal kernel width is defined only by
the problem itself or also by the training algorithm.
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Table 1. Experimental results.

Sample Name # obj. # feat. RVM CV SVM CV RVM MV SVM MV MinTestError
AUSTRALIAN 690 14 15.5 ± 1.2 16.5 ± 1.9 18.6 ± 1.35 21 ± 3.6 13.4

BUPA 345 6 41 ± 0.4 37.5 ± 2.5 39 ± 0.6 37.6 ± 3.8 31
CLEVELAND 303 13 18.6 ± 1.8 21 ± 2.7 20 ± 2.5 28 ± 5.6 17

CREDIT 690 15 17.3 ± 2.7 18 ± 1.6 16.9 ± 2.4 20 ± 2.9 14.5
HEPATITIS 155 19 43 ± 5.6 39.17 ± 3.8 39 ± 3.9 39.21 ± 4.6 36
HUNGARY 294 13 22 ± 4.4 20 ± 2.3 24 ± 5.3 26 ± 4 18

LONG BEACH 200 13 25.25 ± 0.5 25.18 ± 0.9 27 ± 1.7 26 ± 4.6 24.5
PIMA 768 8 34 ± 2.7 30 ± 2 27 ± 2.5 29.6 ± 2.9 23

SWITZERLAND 123 13 6.4 ± 1.6 8 ± 1.8 7 ± 2 7.6 ± 2.3 5.8
Total 21 20 20 29

Finally the last column contains minimal possible test
error.

The results from table 1 were rated in the follow-
ing way. The least test error was given one point,
while the second two points, etc. The worst result
was assigned four points. Total results are shown in
the last line of the table. According to it we may
say that RVM and SVM show competitive results al-
though RVM generated 5-8 times less kernels than the
corresponding SVM. Also our kernel validity measure
works at least not worse than cross-validation alterna-
tive. Moreover it requires only one cycle of training and
hence works significantly faster. Very interesting effect
is poor quality of SVM performance using the kernels
which were considered to be the best (in sense of our
validity measure) for RVM. This proves that kernel va-
lidity depends much on the method of training vector
machine classifier. Also we should mention that nei-
ther cross-validation nor maximum validity index lead
to minimum possible test error. This can be connected
both with peculiarities of training sample and with the
fact that test sample may be biased with respect to the
universal set.

5 Conclusion

Unlike structural risk minimization [6] which re-
stricts too flexible classifiers and minimum description
length approach [4] which penalizes algorithmic com-
plexity, the concept of Bayesian regularization (and
its modification described above) tries to establish the
model where the solution is stable with respect to
changes of classifier parameters. We decided to move
from probabilistic approach and concentrate directly
on idea of stability rather than on applying maximal
likelihood principle to models (i.e. estimating evi-
dence). The proposed characteristic of kernel validity

does not show how good is the kernel for particular
task. It only can serve for estimation of kernel util-
ity in case of fixed training procedure (in our case this
is RVM). This happens because we do not estimate
the validity of whole model (as we use only one clas-
sifier with �w = �wMP ) but consider only local stability
of Q�α(�w) at point �wMP . This method seems to be
quite general and probably could be applied to other
complex machine learning algorithms for tuning their
model parameters.
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