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Abstract

The task of RBF kernel selection in relevance vector machines (RVM) classifier is considered. RVM exploits a probabilistic Bayesian

learning framework offering number of advantages to state-of-the-art support vector machines. In particular RVM effectively avoids deter-

mination of regularization coefficient C via evidence maximization. In the paper we show that RBF kernel selection in Bayesian framework

requires extension of classifiers model. In new model integration over posterior probability becomes computationally unavailable. Therefore

point estimation of posterior probability is used. In RVM evidence value is calculated via Laplace approximation. However extended model

doesn’t allow maximization of posterior probability as dimension of optimization parameters space becomes too high. Hence Laplace ap-

proximation can be no more used in new model. We propose a method of local evidence estimation which establishes a compromise between

accuracy and stability of classifier. In the paper we first briefly describe maximal evidence principle, present model of kernel classifiers as

well as our approximations for evidence estimation, and then give results of experimental evaluation.
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I. Introduction

In classification problem we are given a set of m input objects {~xi}m
i=1 and corresponding class labels

{ti}m
i=1. Using this training information we would like to learn a model of algorithms, which can

accurately determine class labels for new (previously unseen) input objects. One of the most popular

algorithms for solving classification problems is Support Vector Machines (SVM) [1]. This algorithm

makes prediction based on the following model:

y(x) =
m∑

i=1

wiK(x, xi) + w0 (1)

where {wi}m
i=0 is a set of real variables, kernel ’weights’ and K(·, ·) is a kernel function.

SVM has proved its good performance on numerous tasks. The main reasons for the success of SVM

are the following. Vapnik’s idea of optimal hyperplane construction lead to maximal margin principle

[2] which provides better generalization ability. Then so-called ”kernel trick” allows application of linear

methods of machine learning for constructing non-linear surfaces. However, successful application of

SVM needs choosing the particular kernel function as well as regularization coefficient C. Different

values of C and forms of kernel functions lead to sufficiently different behaviour of SVM for particular

task.

Usually the parameters of kernel function and coefficient C are defined using a cross-validation

procedure. This may be too computationally expensive. Moreover the cross-validation estimates of

performance, although unbiased [2], have large variance due to the limited size of the learning sample.

The model selection problem for SVM awakens keen interest from number of researchers. Thus

Vapnik and his colleagues suppose to perform kernel selection via theoretical bounds on leave-one-out

test error. So-called R2W 2 criterion function [9] and bound based on more subtle notion of span of

support vectors [10] were elaborated. In [6] test error estimated with validation set is used. The

work [7] applies evolutionary strategy for tuning parameters obtained by grid search procedure, which

is time consuming. The popular way is application of Bayesian learning framework and MacKay’s
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maximal evidence principle [3] for model selection in SVM. Usually some probabilistic interpretation

of SVM is provided which is then used for adaptation of maximal evidence principle [11], [8].

Recently Tipping proposed an algorithm, which also makes prediction based on decision rule (1).

The algorithm exploits Bayesian regularization for best weights selection [4]. It was called Relevance

Vector Machines (RVM). In this algorithm the weights of the so-called relevance vectors are interpreted

as random values with gaussian prior distribution centered at zero. This approach doesn’t require set-

ting of regularization coefficient C for restriction of weights’ values as large weights are penalized

automatically during training. However, the problem of kernel selection still remains. In the paper we

propose a method for kernel selection in RVM. We focus on the most popular RBF kernel functions

and selection of parameter σ - width of Gaussian. We show that application of Bayesian framework

for kernel selection requires extension of classifiers model. The extended model includes kernel centres.

Integration over posterior probability in new model becomes computationally unavailable. That is

why we use point estimate of posterior probability. Laplace approximation of evidence requires maxi-

mization of posterior probability as well as its Hessian computation. However, in new model too high

dimension of optimization parameters space and the fact that posterior probability is multi-modal

function makes application of Laplace approximation impossible. Instead of this we propose a method

of local evidence estimation which lead to a compromise between stability and accuracy of classifier.

The article is organized as follows. Sections 2 and 3 briefly summarize ideas of Bayesian learning,

maximal evidence principle and relevance vector machines classification. Section 4 presents our ap-

proach and gives points why maximal evidence principle can’t be used directly for kernel selection. In

section 5 experimental results on toy problems and real data are provided while the last section gives

conclusion and discussion.
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II. Bayesian Learning and Maximal Evidence Principle

The paradigm of Bayesian learning allows choosing the most appropriate model for the given training

data. The term model in this context means a set of classifiers with fixed number of parameters and

their prior distributions. Suppose that we have a set of models (either finite, countable or continuum)

W (~α), ~α ∈ A. Here ~α defines the family of classifiers, the structure of their parameters ~w, and their

prior distributions P (~w|~α). Denote by P (Dtrain|~w) the likelihood of the training data description with

given values of ~w. As the hyperparameters ~α do not have direct influence on the training data we may

write

P (Dtrain|~w, ~α) = P (Dtrain|~w) (2)

This means that ~α affects the likelihood of the training data description only by means of its influence

on ~w. A classical way of classifier training is based on maximal likelihood principle, that is finding

~wML = arg max
~w

P (Dtrain|~w)

The probability of new data Dtest given the training set is then just

P (Dtest|Dtrain) = P (Dtest| ~wML)

An alternative way of classifier training is to use Bayesian estimation of the posterior probability of ~w

P (~w|Dtrain) =
P (Dtrain|~w)P (~w)∫

W

P (Dtrain|~w)P (~w)d~w

Then

P (Dtest|Dtrain) =

∫

W

P (Dtest|~w)P (~w|Dtrain)d~w

Such inference can be done within one model. Now suppose we have several (or even continuum)

models W (~α) of different nature, complexity etc. The question is which model is preferable. To

answer it we should estimate the so-called evidence

P (Dtrain|~α) =

∫

W (~α)

P (Dtrain|~w)P (~w|~α)d~w (3)
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Fig. 1. The values of Q(~w) with respect to different ~w for two models. Note that although there is very good algorithm (sharp peak) in the

first model (grey line), the second model (black line) has larger evidence (square under the curve) and hence is more preferable due to

the larger rate of ”good” algorithms (with large values of Q(~w)).

Hereinafter for simplicity reasons we sometimes refer to P (Dtrain|~w)P (~w|~α) as Q~α(~w). The known

principle of maximal evidence [3] states that we should choose that model which has the greatest value

of evidence or, in other words, where the rate of ”good” classifiers is the largest (see Fig. 1). Taking

into account (2) the likelihood of the test data is calculated in the following way:

P (Dtest|Dtrain) =

∫

A

∫

W (~α)

P (Dtest|~w, ~α)P (~w, ~α|Dtrain)d~wd~α = (4)

∫

A

∫

W (~α)

P (Dtest|~w)P (~w|~α, Dtrain)P (~α|Dtrain)d~wd~α,

where

P (~α|Dtrain) ∝ P (Dtrain|~α)P (~α),

i.e. in case of absence of any prior assumptions on ~α, P (~α|Dtrain) is proportional to evidence. Inte-

gration over A is often intractable that is why P (~α|Dtrain) is usually approximated by δ( ~αMP ) where

~αMP = arg max
~α

P (Dtrain|~α). Then equation (4) turns into

P (Dtest|Dtrain) ≈
∫

W ( ~αMP )

P (Dtest|~w)P (~w| ~αMP , Dtrain)d~w (5)
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III. Relevance Vector Machines

Here we briefly consider the idea proposed by Tipping on using Bayesian framework in kernel methods

[4]. Henceforth we consider the classification problem. Let Dtrain = {~x,~t} = {xi, ti}m
i=1 be training

sample where xi = (x1
i , . . . , x

n
i ) are feature vectors in an n-dimensional real space and ti are class labels

taking values from {−1, 1}. Consider the family of classifiers y(xnew) = sign(
∑m

i=1 wiK(xnew, xi) +

w0) = sign(h(xnew, ~w)). Establish prior distribution on the weights P (wi|αi) ∼ N(0, α−1
i ). The set

of parameters ~α determines the model in which the posterior distribution is looked for. Define the

likelihood of training sample as

P (Dtrain|~w, ~α) = P (Dtrain|~w) =
m∏

i=1

1

1 + exp(−tih(xi, ~w))

Then the evidence of model is given by (3). Our goal is to find ~α which maximizes evidence and

then to get posterior distribution P (~w|Dtrain, ~α). As direct calculation of (3) is impossible due to

the intractable integral, Tipping used Laplace approximation for its estimation. He approximated

L~α(~w) = log(P (Dtrain|~w)P (~w|~α)) by quadratic function using its Taylor decomposition with respect

to ~w at the point of maximum ~wMP . Such approximation can be integrated yielding

P (Dtrain|~α) ≈ Q~α( ~wMP ) | Σ |1/2, (6)

Σ = (−∇~w∇~wL~α(~w) |~w= ~wMP
)−1 = (−∇~w∇~w log(P (Dtrain | ~w))− A)−1 (7)

where A = diag(α1, . . . , αm). Differentiating the last expression with respect to ~α and setting the

derivatives to zero gives the following iterative re-estimation equation

αnew
i =

γi

w2
MP,i

(8)

γi = 1− αold
i Σii (9)

Here γi is so-called effective weight of ith parameter. It shows how much it is constrained by regular-

ization term established by prior. It can be easily shown that γi ∈ [0, 1]. If αi is close to zero, wi is

almost unconstrained and γi is close to one. On the contrary in case of large αi the corresponding
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parameter wi is close to zero and is not much affected by training information. So its effective weight

tends to zero.

The training procedure consists of three iterative steps. First we search for the maximum point ~wMP

of L(~w). Then we make approximation according to (6) and use (8) to get the new values of ~α. The

steps are repeated until the process converges.

After the training is finished the integral (5) can be approximated by setting P (~w|Dtrain, ~α) ≈ δ( ~wMP )

resulting in the expression

P (Dtest|Dtrain) = P (Dtest| ~wMP ) (10)

It was shown [4] that RVM provides approximately the same quality as SVM with the same kernel

function and best value of C selected by cross-validation but does not require the regularization

coefficient C to be set by user. Moreover it appeared that RVM is much more sparse, i.e. the rate of

non-zero weights (relevance vectors) is significantly less than the rate of support vectors. This happens

because most of the objects are treated as irrelevant and the corresponding α tend to infinity.

IV. Kernel Selection for RVM

Although maximal evidence principle is fully given in probabilistic terms we may suggest another

interpretation for it. Equation (6) can be viewed as a compromise between accuracy of algorithm on the

training sample (the value of Q~α( ~wMP )) and its stability with respect to small changes of parameters

(expressed by squared root of inverse Hessian determinant). Then we may formulate stability principle.

The more ”stable” the classifier is, the better is its generalization ability. The notion of stability is quite

informal. Different definitions of stability and its relation to generalization ability were investigated

by many researches [13], [14]. Here we understand stability as ability to keep large likelihood (or to be

more exact the values of Q~α(~w)) as long as possible moving from the point of maximum. Such view

allows to modify the concept of Bayesian regularization for the cases where its direct application is

impossible or not reasonable.
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Model selection via maximal evidence principle allows avoiding the direct setting of weight constraints

in RVM. Nevertheless, selection of appropriate kernel function is still needed. The question is whether

it is possible to treat the kernel function type as meta-parameter and to use Bayesian approach for

its definition. Henceforth we consider popular RBF parametric kernels K(x, z) = exp(− ||x−z||2
2σ2 ). Our

goal is to find the best σ value without cross-validation using the idea of stability.

It is easy to see that small values of σ lead to overfitting and hence to high accuracy on the training

sample. On the other hand second item of equation (6) does not penalize such σ due to the following

reason. Small σ means that almost all objects from the training set have non-zero weights and the

influence from the neighboring objects can be neglected. Variations of object’s weight just change

the height of the corresponding kernel function still keeping its center in the object. The change

of weight regardless its value affects only the object in the center of kernel. This means that such

weight’s modification cannot change L~α(~w) much. The likelihood after modification is still very high

and the second term in (6) even encourages small σ as the algorithm is more stable with respect to the

changes of weights in this case. At the same time if we start moving the position of the kernel center,

the likelihood of the training object changes dramatically (see fig.2). So small σ makes classification

unstable with respect to shifts of the kernel centers.

Actually the stability with respect to weight changes is important when we select regularization co-

efficients ~α. The parameters of kernel functions are responsible for stability with respect to kernel shifts.

Hence kernel selection requires extension of our model (1) to hE(xnew, ~w, ~z) = sign(
∑m

i=1 wiK(xnew, zi)+

w0). In new model direct calculation of evidence (3) remains impossible due to intractable integral.

Application of Laplace approximation for evidence requires optimization of kernels location zi in order

to maximize

Lσ,~α(~w, ~z) = log(P (Dtrain|~w, ~z)P (~w|~α)P (~z)) (11)

Unfortunately optimization of Lσ,~α(~w, ~z) with respect to ~z is too difficult due to large amount of

dimensions as ~z ∈ Rmn. Moreover unlike the case with weights, the expression (11) is non-linear with
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Fig. 2. The likelihood of the training sample is a product of likelihoods in each training object x1, x2, x3. Narrow Gaussians centered in

training objects have nearly no influence on the other objects from the training set. Small weight change still keeps the likelihood of the

corresponding object high enough (dotted line) while small shifts of a relevant point (gaussian center) make likelihood significantly lower

in case of small σ (dashed line).

respect to kernel centers and hence multi-modal. This hardens optimization even more.

Consider the last point a bit closer. According to maximal evidence principle model quality depends

on the value of integral (3). Decision rule should be constructed with the aid of equation (5). But in

our case this is impossible due to intractable integral. Hence we would prefer using only the classifier

which was obtained via maximization of Lσ,~α(~w, ~z). If function Lσ,~α(~w, ~z) were unimodal then the

evidence could be approximated by its local behaviour at the maximum point ( ~wMP , ~zMP ). Now

consider the following situation. Our solution is located in narrow peak at point ( ~wMP , ~zMP ) but there

is good stable algorithm somewhere else within the model. The evidence of obtained answer will be

high, but the generalization ability of this single classifier is still poor (see fig. 3). Of course if we used

integration (5) for decision-making that would do, but the trouble is we have no choice but to use its

point estimate (10). According to stability principle we should consider only local characteristics of

the point which will be taken as final solution. Such characteristics are the value of function Lσ,~α(~w, ~z)

and its derivatives which represent the measure of instability. The analogies with Bayesian framework

can be used to unite these values in one equation.
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Fig. 3. The example of model which has large value of evidence with quite poor point estimate. There is no profit of large evi-

dence value if we use algorithm with (~w, ~z) = ( ~wMP , ~zMP ). At the same time local characteristics of point ( ~wMP , ~zMP ) such as

∇w,z∇w,zQ(~w, ~z) |(~w,~z)=( ~wMP , ~zMP ) penalize the obtained algorithm belonging to the model.

As it was mentioned above the optimization of kernel locations is very difficult and time-consuming.

Moreover, according to our experiments such optimization gives nearly no profit in accuracy while

the time of training increases significantly. That is why we propose to keep training objects as kernel

centers estimating at the same time algorithm’s stability with respect to hypothetical kernel shifts.

Consequently it often happens that
∂Lσ,~α(~w,~z)

∂zi
|zi=xi

6= 0. Hence both first and second derivatives become

necessary for definition of stability measure. Our goal is to develop some kind of generalization of

expression (6) for the multi-modal case and non-extremum point.

We will estimate stability of already trained classifier with respect to kernel shifts. Then we may

treat ~wMP as constants which do not depend on ~z. It seems quite obvious that there are no prior

constrains on centers location so that we may establish improper uniform prior P (~z) = const. Now

we may rewrite the expression (11):

Lσ,~α(~w, ~z) = log(P (Dtrain|~w, ~z)) + Ψ(~w, ~α) (12)

where Ψ(~w, ~α) does not depend on ~z and hence may be ignored during differentiation.

When the training is finished all we are interested in is to keep accuracy on the test sample as
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close to the training accuracy as possible. We are not going to get better performance (although it

is theoretically possible). This means that we should examine how fast the accuracy may degrade

with respect to the changes of algorithm’s settings (in our case these are kernel centers). Denote Ai

the instability of P (Dtrain| ~wMP , ~z) with respect to kernel located in zi. We assume that it may be

decomposed as if the stabilities with respect to different coordinates were independent

Ai =
n∏

j=1

Aij

where Aij expresses the stability of classifier with respect to small changes of jth coordinate of ith

kernel. For determination of Aij we will approximate log(P (Dtrain| ~wMP , ~z)) with parabolic function

using its Taylor decomposition at the point ~z = ~x with respect to zj
i . Then we may write

Aij =





|a|−1, if b ≥ 0

1
2

√
2π
b

exp
(

a2

2b

)(
1− erf

(
|a|√
2b

))
, otherwise

(13)

here

a =
∂ log(P (Dtrain| ~wMP , ~z))

∂zj
i

b = −∂2 log(P (Dtrain| ~wMP , ~z))

(∂zj
i )

2

The sense of equation (13) is shown on figure IV. First we approximate f(zj
i ) = P (Dtrain| ~wMP , ~z)

with negative parabola or with a line (if second derivative is non-negative) in logarithmic scale at point

zj
i = xj

i . This yields to gaussian or exponent approximation of tail of Q(~w, ~z). Then we integrate the

tail of approximation in order to get a measure of stability in terms of derivatives. Note that we do

not want to approximate the real value of integral. Our purpose is to express a degree of stability

similar to (6). If xj
i were an extremum point of f(zj

i ) then Aij would be exactly the result of Laplace

approximation taken along xj
i coordinate. Regarding evidence as a compromise between accuracy and

stability rather then integral (3) we deduced similar expression for more general case.

Now we would like to unite the stability with accuracy in one expression. To do so we should consider

the weight of each kernel. Actually if the weight of kernel is close to zero its stability doesn’t play
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Fig. 4. The optimization in the space of kernel locations ~z is quite hard so we place all kernels in the objects of the training sample, i.e.

~z = ~x. This may lead to non-zero gradients of ∇~zQ(~w, ~z). To establish a compromise between the accuracy of given algorithm and its

ability to keep its performance with changes of parameters we integrate the tail in Laplace approximation of Q(~w, ~z) (grey area). This

yields to expression which combines algorithm’s local accuracy (the value of Q(~w, ~z)) and stability (the values of its derivatives).

important role. It is clear that zero weight wi corresponds to the case as if there were no kernel in zi.

Taking into consideration the effective weights (9) of each kernel γi which vary from 0 to 1 we may

get the expression for total stability of likelihood with respect to all kernels

Z =
m∏

i=1

Aγi

i =
m∏

i=1

(
n∏

j=1

Aij)
γi (14)

The last expression is equivalent to simple weighted summation of stabilities in logarithmic scale.

Theorem 1. The expression (14) is correctly defined with respect to addition or removal of kernels

with zero weight.

Proof. Suppose that w1 = 0. Then we should prove that

m∏
i=1

Aγi

i =
m∏

i=2

Aγi

i

During RVM training we maximize evidence (6). If w1 = 0 then it can be shown that corresponding

α1 equals infinity. Otherwise w1 would fit the data at least partly. Now recall that γ1 = 1 − α1Σ11

where Σ11 is the first element of inverse Hessian matrix (7)

Σ = (−∇~w∇~wL~α(~w) |~w= ~wMP
)−1
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For large α1 the element Σ11 ≈ α−1
1 . Thus the limit limα1→∞ α1Σ11 = 1. This yields to γ1 = 0.

Substituting this result in (14) we have

m∏
i=1

Aγi

i = Aγ1

1

m∏
i=2

Aγi

i =
m∏

i=2

Aγi

i

This means that we may add or remove arbitrary number of zero-weight kernels without changing

anything in stability expression. Theorem is proved.

Multiplying Z and the value of likelihood at the point ~wMP we get kernel validity value

KV = P (Dtrain| ~wMP , ~z)Z (15)

Note that the equation (6) is just a particular case of kernel validity. The kernel function which

corresponds to the largest value of validity is supposed to be the best one for the particular task.

Thus the procedure for selection of width parameter σ in gaussian parametric family of kernel

functions becomes the following:

1. Choose some σ value.

2. Put ~z = ~x.

3. Run iterative process for training RVM classifier. At each step we first search for maximum point

~wMP of function Lσ,~α(~w, ~x). Then Laplace approximation (6) is used and new ~α values are calculated

by means of equations (8), (9). The steps are repeated until the process converges.

4. At the point ~wMP calculate kernel validity (15), where components Aij are taken from (13), while

effective weights γi are determined from (9).

The value of σ corresponding to the largest value of validity is considered to be the optimal one.

Our further task is to check performance of the proposed kernel selection procedure. It seems

obvious that both very narrow and very wide kernels will have lower values of validity. Narrow kernels

lead to too unstable classifiers with respect to kernel shifts while classifiers with wide kernels are too

inaccurate. We expect to see such behavior during experiments on toy and real-world problems.
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Fig. 5. Training sample of toy problem. Black line is optimal class boundary according to Bayes classifier.

V. Experimental Results

A. Toy problem

First we examined the performance on easy-to-interpret toy problem taken from [12]. It can be also

downloaded from http://www-stat.stanford.edu/ElemStatLearn. This is two-class task with non-linear

class border. The dimension of feature space is two. Training sample with optimal Bayes border

between classes is given on figure 5. It consisted of 200 objects. As a test sample we generated 5000

objects according to the same distribution. The error rate on such large sample can be regarded as

error on the universal set. The importance of selecting the proper value of kernel width is illustrated

by figure 6 where train and test errors for different kernels are shown. To test the performance of

the proposed approach we compared it with its most widely-used alternative - cross-validation. In

particular we used 5-fold cross-validation. We also estimated validity of each kernel using the ideas

described above. Figure 6 shows cross-validation error so as validity index. It can be seen that

maximum validity kernel is better suited for the task (although not in the best way). The reason of

relatively poor cross-validation performance is the following. In spite of its good property of being

unbiased [2], cross-validation estimate may have large variance especially for small training samples.

We suppose that this is also the reason that validity measure doesn’t reach its maximum value on the
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Fig. 6. Different measurements of kernel quality for toy problem. Black lines show train (cross markers) and test (square markers) errors

correspondingly. Grey line with markers shows 5-fold cross-validation error. The logarithm of kernel validity is shown by light grey line.

It can be seen that narrow kernels lead to overfitting while wide kernels can’t achieve good performance even for the training sample.

Note that neither cross-validation error, nor kernel validity index select best possible kernel with σ = 0.3. This can be explained by the

fact that both measures are computed using only limited training sample. However the use of kernel validity index is preferable.

kernel which leads to the minimum of test error. Both cross-validation techniques and validity index

are based on the training sample which, generally speaking, differs from the universal set due to its

limited size.

B. Real world tasks

To compare performance of kernel validity index vs. cross-validation we carried out 180 experiments

on kernel selection using 9 problems from UCI repository [5]. The experiments were conducted in

the following way. For each task we randomly split the data into train (33%) and test (67%) sets.

Then we trained and tested RVM using kernels of different width (σ = 0.01, 0.1, 0.3, 1, 2, 3, 4, 5, 7, 10),

calculating cross-validation errors (using 5-fold cross-validation) and validity indices. After that we

chose test error which corresponded to the kernels with maximum validity or with best cross-validation

estimate and averaged these errors by 20 pairs of train/test tables formed from the same dataset. The

averaged results with their standard deviations are shown in table I. Note that we also considered

popular support vector machines (SVM) with the same kernels. Column RVM CV shows the averaged
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results of kernel selection according to 5-fold cross-validation for RVM. The next column shows the

analogous results obtained by applying 5-fold cross-validation to SVM. The following column RVM

MV shows averaged test errors which correspond to maximum kernel validity index. Column SVM MV

shows how SVM performs with the same kernels as in RVM MV. Note that we did not apply maximum

validity procedure to select SVM kernel just taking the one which appeared to be ”the best” for RVM

case. Column SVM MV helps us to check whether the optimal kernel width is defined only by the

problem itself or also by the training algorithm. Finally the last column contains minimal possible

test error averaged by 20 pairs of train/test sets.

TABLE I

Experimental evaluation of different kernel selection methods for RVM and SVM. The table presents test error along

with standard deviation for datasets taken from UCI repository. Columns RVM CV and SVM CV state results for RVM and

SVM correspondingly with kernel function obtained via 5-fold cross-validation procedure. RVM MV contains RVM

performance with maximal kernel validity index. SVM MV shows results of SVM with the same kernel as in RVM MV.

MinTestError provides minimally possible test error for each sample. The row Total presents total rate of each classifier.

Sample Name RVM CV SVM CV RVM MV SVM MV MinTestError

AUSTRALIAN 15.5± 1.2 16.5± 1.9 18.6± 4.35 21± 3.6 13.4

BUPA 41± 0.4 37.5± 2.5 39± 3.6 37.6± 3.8 31

CLEVELAND 18.6± 1.8 21± 2.7 20± 3.5 28± 5.6 17

CREDIT 17.3± 2.7 18± 1.6 16.9± 2.4 20± 2.9 14.5

HEPATITIS 43± 5.6 39.17± 3.8 39± 3.9 39.21± 4.6 36

HUNGARY 22± 4.4 20± 2.3 24± 5.3 26± 4 18

LONG BEACH 25.25± 0.5 25.18± 0.9 27± 4.7 26± 4.6 24.5

PIMA 34± 2.7 30± 2 27± 2.5 29.6± 2.9 23

SWITZERLAND 6.4± 1.6 8± 1.8 7± 2 7.6± 2.3 5.8

Total 21 20 20 29

To interpret data from table I the results were rated in the following way. The least test error was

given one point, while the second two points, etc. The worst result was assigned four points. Then
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these points were summed by all nine problems from UCI repository. Total results are shown in last

line of the table. According to it we can make several conclusions. First of all we may say that

RVM and SVM show approximately the same competitive results although training algorithms are

completely different so as the location of significant kernels. Our experiments confirmed that RVM

is generally much more sparse than SVM generating 5-8 times less kernels than the corresponding

support vector classifier. Another important conclusion is that our kernel validity measure works no

worse than cross-validation alternative. Moreover it requires only one cycle of training and hence works

several times faster. Very interesting effect is poor quality of SVM performance using the kernels which

were considered to be the best (in the sense of our validity measure) for RVM. This proves that kernel

type depends much on the method of training vector machine classifier. Also we should mention that

neither cross-validation nor maximum validity index lead to minimum possible test error. This can be

connected both with peculiarities of training sample and with the fact that test sample may be biased

with respect to the universal set.

VI. Discussion and Conclusion

Results of experiments allow making the following conclusions. First of all the idea of stability can

be used for generalization of maximal evidence principle. Unlike structural risk minimization which

restricts too flexible classifiers and minimum description length approach which penalizes algorithmic

complexity, the concept of Bayesian regularization (and its modification described above) tries to

establish the model where the solution is stable with respect to changes of classifier parameters.

Numerous realizations of Bayesian principles for model selection so as our experiments confirm that

such approach to machine learning is promising. We decided to move from probabilistic approach

and concentrate directly on idea of stability rather than on applying maximal likelihood principle to

models (i.e. estimating evidence). Such modification allows exploiting this framework for non-linear

models using only one classifier instead of integration over the whole space of parameters with weights
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defined by posterior distribution P (~w|Dtrain, ~α). The proposed characteristic of kernel validity does

not show how good the kernel is for particular task. It only can serve for estimation of kernel utility in

case of fixed training procedure (in our case this is RVM). Performance of logistic regression or SVM

classifier with the same kernel may differ significantly. This happens because we do not estimate the

validity of whole model (as we use only one classifier with ~w = ~wMP ) but consider only local stability

of Q(~w) at point ~wMP . This method seems to be quite general and probably could be applied to other

complex machine learning algorithms for tuning their model parameters.

The idea to take into consideration both the model of algorithms and particular training procedure

(our ability to find good classifier inside the model) for estimation of classifier’s quality is not novel.

For example, Vapnik proposes so-called effective capacity [2]. Unlike model capacity new notion

suggests consideration of training sample and considers only those classifiers which can be obtained

inside the model using particular training sample. As a result error bounds become more accurate.

Popular boosting and bagging techniques are said to increase both training accuracy and generalization

ability of algorithms. These methods make classifier’s model sufficiently more complex. Nevertheless,

effective way of choosing particular algorithm inside the extended model avoids drawbacks of such

complication. Explicit consideration of training procedure together with model’s properties led to

new theory of algorithms quality estimates, based on combinatorial approach [15]. In our case we are

not able to consider all possible algorithms inside the model (to integrate over posterior probability

P (~w|Dtrain, ~α)). However, consideration of local stability of Q(~w, ~z) at point ~wMP (our ability to find

good classifier inside the model) gives us appropriate technique for kernel selection task.

In kernel selection procedure stability principle can be used for searching more sophisticated kernels

(e.g. K(~x, ~y) = exp(−1
2
(~x − ~y)T S−1(~x − ~y)) where S is positively defined matrix) without risk of

overfitting. The same ideas can be used in regression problems e.g. in relevance vector regression. It is

very interesting how the principle of stability will change in application for support vector machines.

Although SVM exploits non-probabilistic framework, it can be expressed in terms of likelihood and
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prior [11].
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