
Machine learning regularization based on instability penalty

Vetrov Dmitry
Computing Center of the Russian Academy of Sciences

Russia, 119991, Moscow
Vavilova str. 40

VetrovD@yandex.ru

Abstract

The procedure of machine learning is an example of
ill-posed problem and hence has to be regularized. The
idea of procedure described below is to consider properly
classified objects with big gradient of posterior probabil-
ities as wrong answers of the algorithm. After modify-
ing usual quality functional it becomes possible to use
only the training sample for finding algorithms, which
classify the independent sample as well.

1. Introduction

It is well known, that a classical pattern recogni-
tion task is ill-posed. There is only a finite number
of objects in the training sample while the algorithmic
family usually depends on parameters with continuous
values. This leads to continuum of possible solutions
and, what’s worse, to unstable solutions. The latter
means that after changing a little the values of features,
one can’t be sure that the algorithm’s answer will not
change dramatically. Variability of algorithms among
the parametric family results in so-called overfitting
which is one of the most severe problems in machine
learning theory nowadays. Quite obvious fact is that
the more variable classification algorithm is, the more
probably it suffers from overfitting. Theory of struc-
tural risk minimization by Vapnik [6], [7] offered a way
of defining the best algorithmic family as a compro-
mise between its performance on the training sample
and some penalty value which depends on algorithm’s
complexness expressed in VC-dimension. Although ex-
cellent in theory, this method is quite difficult to im-
plement in practice because VC-dimension for a large
number of algorithms is still unknown. Another way is
to assume that the simplest models are more probable
(Occam’s razor). This brings us to Bayes regularization
[3] and quite close to the minimal description length

principle [2]. The best algorithmic family for solving
the particular task, are those with minimal values of
information criteria (AIC, BIC etc.). These methods
allow choosing the best in some sense family, but can’t
be used directly during the training in the general case.
However, in some special kinds of classifiers (like Rel-
evance Vector Machines [5]) these concepts appeared
to be possible to use and showed good results [1].

The aim of this article is to establish a possible
way of building classifier with good performance on
the test sample based on the regularization of quality
functional. In the next section there given some con-
ceptual aspects of the overfitting phenomena. Section
3 describes the way of regularizing the quality func-
tional with convergence theorem and in section 4 there
are some practical results.

2. The reason of overfitting

During the construction of pattern recognition algo-
rithm we usually want it to work ”well” on the objects
for which the answers are unknown. This is achieved by
showing it some objects with known answers (training
sample). Good algorithm should satisfy two demands:
high memorizing capability and high generalizing capa-
bility. The first means high quality of the work on the
training sample and can be measured directly during
the process of learning for example the following way:

MC =
merrors

m
(1)

where merrors is the number of errors made on the
training sample and m is total number of objects in
the training sample. Another way is to measure some
deviations of algorithm’s output from the desired out-
put.

As for the generalizing capability, it can be inter-
preted as closeness of work on the training sample and



on the arbitrary object. The example of it is given by
the following formula:

GC = (Ptr.err. − Parb.err.)2 (2)

where Ptr.err. is error probability on the training sam-
ple and Parb.err. is error probability on arbitrary object.

Unfortunately the probability of error on arbitrary
object can’t be measured directly as we have just a lim-
ited number of objects. Indirect measuring of general-
izing capability involves the independent control sam-
ple (which hence stops being independent and can’t be
used for estimating the quality of obtained algorithm
afterwards) or cross-validation procedures. The first
means that some part of objects must be excluded from
the training and is unacceptable in the cases of small
samples. The second way requires numerous retraining
thus becoming too expensive from the computational
point of view. Moreover, not all methods allow to con-
sider the control sample or to perform cross-validation
during the training . That is why the most methods
of training pattern recognition algorithms are based on
the maximization of just memorizing capability. This
would be enough if the capability of generalization were
the same during the whole process of training. Unfor-
tunately it becomes lower and lower while training con-
tinues (see Figure 1). It’s obvious that just minimizing
the error on the training sample we will loose gener-
alization capability catching nothing but noise. From

Figure 1. Changes of memorizing and gener-
alizing capabilities during training.

the other side stopping training too early we will re-
ceive ”undertraining” thus catching not all regularities
and associations in the data. The question is where
we should stop to achieve the minimum error on the
arbitrary object.

3. Regularization of functional

As was noted in the introduction, pattern recogni-
tion task is ill-posed problem. In mathematics there
are methods for solving such applied tasks by remov-
ing them with new ones, which are quite close in some
sense to the initial, but are well-posed and hence more
useful [4]. The main trouble in pattern recognition is
overfitting on the training sample, which is connected
with wrong quality functional. If the training sample
were infinitely long, minimizing the error rate would be
enough to build good algorithm. But in real life, there
should be some considerations about its generalizing
capability.

In this work we assume that this capability is con-
nected with stability of the algorithm on the training
sample. Consider recognition task with l classes, where
each object is represented as a vector of n real fea-
tures. Below there reviewed the classifiers which re-
turn posterior probabilities of belonging the object to
be recognized to each class. In this case the algorithm
can be considered as a vector function A : Rn → P l,
where P l = {(p1, . . . , pl)|

∑l
j=1 pj = 1, pj ≥ 0} . Note

that the most of classifiers, even those, which construct
some kinds of hypersurfaces, can be represented in this
way (see for example [5]). The classical quality func-
tional, which is connected with the error rate on the
training sample, can be scaled in order to have values
from zero to one. Then consider the following regular-
izator:

R(λ) =
1
m

m∑

j=1

exp
(
− P 2{ωk| ~xj}

2‖λ∇P{ωk| ~xj}‖2
)

(3)

where P{ωk|~x} is an estimate of posterior probability
that the object belongs to class ωk and

k = arg max
1≤i≤l

P{ωi|~x}

Each item under the sign of summation shows the
degree of instability on j-th element of the training
sample. As regularizator varies from zero to one, it
can be added to the quality functional. Then the reg-
ularized functional to be minimized is:

Ψ(~w, λ) = Φ(~w) + R(λ) (4)

~w is a set of algorithm’s parameters, while Φ(~w) is tra-
ditional quality functional, which we interpret as a de-
gree of falseness on the training sample.

Regularization parameter λ shows the strength of
instability penalty, while the whole regularizator is the
average degree of instability on the training sample. As



in regularization theory, we may easily prove (Conver-
gence theorem) that

lim
λ→0

Ψ(~w, λ) = Φ(~w) (5)

The aim of training procedure now is to minimize
the regularized functional. Note, that we sacrifice the
correct classification of some objects from the training
sample in order to achieve more stability and hence
higher generalization capability.

4. Experimental results

To check the use of such regularization, an easy
model classifier was built. The posterior probabilities
are given by the following formula:

P{ωi|~xj} =

∑
~xk∈ωi

exp(−ρ2(~xj ,~xk)
2σ2 )

∑m
k=1 exp(−ρ2(~xj ,~xk)

2σ2 )
(6)

This classifier depends on only one parameter σ which
defines the wideness of kernel function. The less it
is, the better algorithm works on the training sample,
but the higher is overfitting. The use of regularized
functional helps to find parameter value, which gives
the best results on the independent test sample. The
results of two experiments are shown on Figure 2 and
Figure 3. The first task was cancer diagnostics and the

Figure 2. Cancer diagnostics (344 objects, 9
features). There showed the values of three
types of functional (curves) and the percent
of errors on the test sample (histogram)

second task was to define drug intoxication according
to the reaction of human eye on the light flash. In both
cases, minimum of regularized functional (with λ = 0.5
and λ = 1) is in accord with minimum of errors on the
test sample (histogram). There is also shown the curve

Figure 3. Drug intoxication (500 objects, 12
features). There showed the value of classi-
cal and traditional quality functional (curves)
and the percent of errors on the test sample
(histogram)

of classical quality functional Φ(~w) = Ψ(~w, λ), which
depends on the training errors. During the numerous
experiments a curious fact was noted. With necessary
preprocessing of feature table (shifting and scaling),
the best value of λ does not depend on the specific
task and is about one.

5. Conclusion and directions for future
work

The results of experiments showed that such regu-
larization could be used during training to avoid the
overfitting and achieve the best proportion between
memorizing and generalizing capabilities. Despite the
other regularization techniques there is not so neces-
sary to solve special optimization task for searching
the best regularization parameter as it is connected
with geometrical properties of the feature space and
is nearly invariant after the preprocessing. During the
next months it is planned to check how such regular-
ization affects other families of algorithms (e.g. Neural
Networks [8]). It seems clear that training algorithms
can be easily updated to the regularized functional.
Also it is quite interesting to compare this concept with
the ones described in the introduction.
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